石油炼制与化工 ›› 2025, Vol. 56 ›› Issue (7): 8-12.

• 加工工艺 • 上一篇    下一篇

不同类型渣油固定床加氢脱金属反应特性差异

邵志才,胡大为,戴立顺   

  1. 中石化石油化工科学研究院有限公司
  • 收稿日期:2024-11-22 修回日期:2025-02-22 出版日期:2025-07-12 发布日期:2025-07-01
  • 通讯作者: 邵志才 E-mail:shaozc.ripp@sinopec.com

DIFFERENCE ON HYDRODEMETALIZATION REACTION CHARACTERISTICS FOR DIFFERENT KINDS OF RESIDUE FEEDSTOCK


  • Received:2024-11-22 Revised:2025-02-22 Online:2025-07-12 Published:2025-07-01

摘要: 利用镍含量较高、钒含量较低(镍、钒质量分数分别为36.6 μg/g和19.2 μg/g)的A原料及镍含量较低、钒含量较高(镍、钒质量分数分别为23.8 μg/g和83.0 μg/g)的B原料,在同一固定床加氢试验装置上,采用相同催化剂级配方案,在体积空速为0.23 h-1、反应器入口氢分压为15.0 MPa、氢油体积比为700、平均反应温度为375.5 ℃的条件下开展渣油加氢试验,结果表明:与加工A原料相比,加工B原料时加氢脱镍率高4.00百分点,加氢脱钒率高8.71百分点,加氢脱金属(镍+钒)率高9.41百分点。比较加工镍含量较高、钒含量较低渣油的工业固定床加氢装置U1与加工镍含量较低、钒含量较高渣油的工业固定床加氢装置U2发现:与U1装置相比,U2装置的加氢脱镍率高4.52百分点,加氢脱钒率高8.18百分点,加氢脱金属(镍+钒)率高9.52百分点。为了提高固定床渣油加氢脱金属率,实验室应研发胶质和沥青质转化能力更高的催化剂及级配方案并应用于工业装置中,工业装置可优先加工或适当掺炼镍与钒质量分数之比较低的原料,也可适当掺炼高芳香性的原料。

关键词: 渣油加氢, 原料, 加氢脱镍, 加氢脱钒, 加氢脱金属

Abstract: Using Feedstock A with high nickel(Ni) content and low vanadium(V) content (Ni and V mass fractions of 36.6 μg/g and 19.2 μg/g, respectively) and Feedstock B with low Ni content and high V content (Ni and V mass fractions of 23.8 μg/g and 83.0 μg/g, respectively), fixed bed residue hydrotreating experiments were carried out on the same fixed bed hydrotreating pilot-test unit with the same catalyst gradation under the conditions of a liquid-hour volume space velocity of 0.23 h-1, a hydrogen partial pressure at the reactor inlet of 15.0 MPa, a hydrogen oil volume ratio of 700, and an average reaction temperature of 375.5 ℃. The results demonstrated that Feedstock B achieved superior hydrodemetallization performance. Compared with Feedstock A, Feedstock B showed higher Ni,V and (Ni+V) removal efficiency by 4.00,8.71 and 9.41 percentage points,respectively. This trend was corroborated in industrial operations when comparing Unit U1 processing high Ni content and low V content residue with Unit U2 processing low Ni content and high V content residue. U2 exhibited higher Ni removal by 4.52 percentage points, higher V removal by 8.18 percentage points, and higher total metal removal by 9.52 percentage points than U1,respectively. To enhance hydrodemetallization efficiency in fixed-bed residue hydrotreating, two strategic approaches are recommended: Laboratory development of catalysts and grading systems with enhanced conversion capability for resins and asphaltenes, followed by industrial implementation; Operational optimization through preferential processing or appropriate blending of feedstocks with lower Ni/V mass ratio or higher aromaticity in commercial units.

Key words: residue hydrotreating, feedstock, hydrodenickelization, hydrodevanadization, hydrodemetallization