石油炼制与化工 ›› 2021, Vol. 52 ›› Issue (11): 78-86.

• 控制与优化 • 上一篇    下一篇

基于Keras的神经网络技术在柴油超深度加氢精制中的应用

胡元冲,秦康,李明丰,田旺,张乐,王轶凡,陈文斌   

  1. 中国石化石油化工科学研究院
  • 收稿日期:2021-02-22 修回日期:2021-04-30 出版日期:2021-11-12 发布日期:2021-10-29
  • 通讯作者: 秦康 E-mail:qinkang.ripp@sinopec.com

APPLICATION OF KERAS-BASED NEURAL NETWORK TECHNOLOGY IN DIESEL ULTRA-DEEP HYDROREFINING

  • Received:2021-02-22 Revised:2021-04-30 Online:2021-11-12 Published:2021-10-29
  • Contact: Kang Qin E-mail:qinkang.ripp@sinopec.com

摘要: 采用高通量反应装置,在温度300~360 ℃、压力4.4~7.4 MPa、体积空速0.75~12 h-1、氢油体积比200~800的条件下,使用不同柴油原料对NiMo/Al2O3,CoMo/Al2O3,NiMoW/Al2O共3种催化剂进行性能评价。采用基于Keras的神经网络技术建立了适用于3种不同催化剂的柴油超深度加氢精制模型,实现了柴油产物中硫质量分数(WS)、氮质量分数(WN)、单环芳烃质量分数(WMA)和多环芳烃质量分数(WPA)的预测。结果表明,所建模型具有良好的预测性能和泛化能力,对WS和WN预测的平均相对误差均在10%以内,对WMA和WPA预测的平均相对误差分别在3%和6%以内。使用所建模型同时对3种催化剂适用的工艺条件进行了优化,在满足国Ⅵ柴油质量标准对WS及WPA的要求下,确定了不同催化剂适用的工艺条件范围。

关键词: 加氢精制, Keras 神经网络, 数据驱动模型, 工艺优化, 硫, 氮, 单环芳烃, 多环芳烃

Abstract: NiMo,CoMo and NiMoW catalysts were evaluated with different diesel feedstocks in a high-throughput reactor under the conditions of a temperature of 300-360 ℃,a pressure of 4.4-7.4 MPa,a LHSV of 0.75-12 h-1 and a volume ratio of hydrogen to oil of 200-800. The Neural network technology based on Keras was used to establish diesel ultra-deep hydrorefining models suitable for three different catalysts,and the prediction of sulfur,nitrogen,monocylic aromatics and polycyclic aromatics content in diesel products was realized. The results show that these models have good prediction performance and generalization ability. The average relative error of the prediction of sulfur and nitrogen content in the product is less than 10%,and the average relative error of the prediction of monocylic and polycyclic aromatics content is less than 3% and 6%,respectively. These models can be used to optimize the process conditions of the three catalysts simultaneously,and the range of process conditions for different catalysts can be determined under the premise that the sulfur and polycyclic aromatics content of diesel products can satisfy the requirements of China Ⅵ Standard.

Key words: hydrofining, Keras neural network, data driven model, process optimization, sulfur, nitrogen, monocylic aromatics, polycyclic aromatics