石油炼制与化工 ›› 2012, Vol. 43 ›› Issue (4): 80-86.

• 控制与优化 • 上一篇    下一篇

污水汽提双塔工艺流程模拟分析与用能改进

魏志强,吴升元,张冰剑,陈清林   

  1. 中山大学化学与化学工程学院 低碳化学与过程节能广东省重点实验室
  • 收稿日期:2011-09-08 修回日期:2011-10-17 出版日期:2012-04-12 发布日期:2012-03-29
  • 通讯作者: 陈清林 E-mail:chqlin@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金;广东省科技计划重大专项

SIMULATION, ANALYSIS AND ENERGY-USE IMPROVEMENT OF A TWO-TOWER SOUR WATER STRIPPING UNIT

  • Received:2011-09-08 Revised:2011-10-17 Online:2012-04-12 Published:2012-03-29

摘要: 在分析污水汽提机理的基础上,运用流程模拟软件PRO/II、选择酸水工艺包对污水汽提双塔工艺流程进行模拟。重点探讨H2S汽提塔冷污水进料比例、热进料温度、热进料位置和NH3汽提塔进料温度、进料位置、循环冷凝污水比例等对污水汽提装置能耗的影响,提出以下装置优化工艺参数:H2S汽提塔冷污水进料比例0.02,热进料温度408 K;NH3汽提塔进料温度435 K,进料位置为第2块塔板,取消循环冷凝污水。基于流程模拟分析提出污水汽提双塔工艺流程用能改进措施:取消H2S汽提塔热进料污水与含NH3污水换热,增加NH3汽提塔塔顶气、装置蒸汽冷凝水与H2S汽提塔热进料污水换热。模拟结果表明,采用以上措施进行用能改造后,装置能耗降低了22.3%。

关键词: 污水汽提, 流程模拟 , 节能

Abstract: A two-tower sour water stripping unit is studied in this paper. Based on a detailed analysis for the mechanism of sour water stripping process, the process is simulated by sour water package in PRO/II software, focusing on the factors affecting the energy consumption of the unit, such as for H2S stripping tower, the ratio of cold feed, inlet temperature of hot feed and feeding position; for NH3 stripping tower, the ratio of recycle condensed wastewater, feed temperature and inlet position. The optimal operation parameters are proposed as follows: for H2S stripping tower, the ratio of the cold feed is 0.02, the hot feed temperature is 408 K; for NH3 stripping tower, the feed temperature is 435 K, the optimal feed inlet position is at 2nd plate and without recycle of condensed wastewater. Options for saving energy-use are also obtained: canceling the heat exchange between hot feed water of H2S stripping tower and NH3 containing water; adding heat exchange among top gas of NH3 stripping tower, steam condensate of reboilers and the hot feed water of H2S stripping tower. Simulation results show that after adopting these measures, the energy consumption of this unit reduces by 22.3%.

Key words: sour water stripping unit, process simulation , energy saving

中图分类号: