[1] Fujikawa T, Kimura H, Kiriyama K, et al. Development of ultra-deep HDS catalyst for production of clean diesel fuels[J]. Catalysis Today, 2006, 111(3-4): 188-193[2] Breysse M, Afanasiev P, Geantet C, et al. Overview of support effects in hydrotreating catalysts[J]. Catalysis Today, 2003, 86(1-4): 5-16[3] Al-Daous A, Ali A. Deep desulfurization of gas oil over NiMo catalysts supported on alumina–zirconia composites[J]. Fuel, 2012, 97: 662-669[4] Eijsbouts S, Mayo W, Fujita K. Unsupported transition metal sulfide catalysts: From fundamentals to industrial application[J]. Applied Catalysis A: General, 2007, 322: 58-66[5] Alvarez L, Espino J, Ornelas C, et al. Comparative study of MoS2 and Co/MoS2 catalysts prepared by ex situ/in situ activation of ammonium and tetraalkylammonium thiomolybdates[J]. Journal of Molecular Catalysis A: Chemical, 2004, 210(1-2): 105-117[6] Centi G, Perathoner S. Catalysis by layered materials: A review[J]. Microporous and Mesoporous Materials, 2008, 107(1-2): 3-15[7] Sun M, Nicosia D, Prins R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis[J]. Catalysis Today, 2003, 86(1-4): 173-189[8] Chianelli R, Berhault G, Torres B. Unsupported transition metal sulfide catalysts: 100 years of science and application[J]. Catalysis Today, 2009, 147(3-4): 275-286[9] Yoosuk B, Kim H, Song C, et al. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Catalysis Today, 2008, 130(1): 14-23[10] Nava H, Ornelas C, Aguilar A, et al. Cobalt-Molybdenum Sulfide Catalysts Prepared by In Situ Activation of Bimetallic (Co-Mo) Alkylthiomolybdates[J]. Catalysis Letters, 2003, 86: 257-265[11] Nava H, Pedraza F, and Alonso G. Nickel-Molybdenum-Tungsten Sulfide catalysts prepared by in situ activation of tri-metallic (Ni-Mo-W) alkylthiomolybdotungstates[J]. Catalysis Letters, 2005, 99: 65-71[12] Yi Y, Zhang B, Jin X, et al. Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts[J]. Journal of Molecular Catalysis A: Chemical, 2011, 351: 120-127[13] Huirache-Acu?a R, Albiter A, Espino J, et al. Synthesis of Ni–Mo–W sulphide catalysts by ex situ decomposition of trimetallic precursors[J]. Applied Catalysis A: General, 2006, 304: 124-130[14] Olivas A, Galván H, Alonso G, et al. Trimetallic NiMoW unsupported catalysts for HDS[J]. Applied Catalysis A: General, 2009, 352(1-2): 10-16[15] Kunisada N, Choi K, Korai Y, et al. Novel zeolite based support for NiMo sulfide in deep HDS of gas oil[J]. Applied Catalysis A: General, 2004, 269(1-2): 43-51[16] Klimova T, Reyes J, Gutiérrez O, et al. Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: Effect of support Si/Al ratio[J]. Applied Catalysis A: General, 2008, 335(2): 159-171[17] Saih Y, Nagata M, Funamoto T, et al. Ultra deep hydrodesulfurization of dibenzothiophene derivatives over NiMo/TiO2-Al2O3 catalysts[J]. Applied Catalysis A: General, 2005, 295(1): 11-22[18] Levin D, Soled S, Ying J. Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation[J]. Ingorganic Chemistry, 1996, 35: 4191-4197[19] Zhou T, Yin H, Liu Y, et al. Synthesis, Characterization and HDS Activity of Carbon-Containing Ni–Mo Sulfide Nano-Spheres[J]. Catalysis Letters, 2009, 134(3-4): 343-350[20] Ho T. Deep HDS of diesel fuel: chemistry and catalysis[J]. Catalysis Today, 2004, 98(1-2): 3-18[21] Pecoraro T, Chianelli R. Hydrodesulfurization catalysis by transition metal sulfides[J]. Journal of Catalysis, 1981, 67: 430-445 [22] Toulhoat H. Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors[J]. Journal of Catalysis, 2003, 216(1-2): 63-72[23] Dinter N, Rusanen M, Raybaud P, et al. Temperature-programed reduction of unpromoted MoS2-based hydrodesulfurization catalysts: Experiments and kinetic modeling from first principles[J]. Journal of Catalysis, 2009, 267(1): 67-77[24] Toulhoat H, Raybaud P, Kasztelan S, et al. Transition metals to sulfur binding energies relationship to catalytic activities in HDS: back to Sabatier with first principle calculations[J]. Catalysis Today, 1999, 50: 629-636[25] Daudin A, Brunet S, Perot G, et al. Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts[J]. Journal of Catalysis, 2007, 248(1): 111-119[26] Daudin A, Lamic F, Pérot G, et al. Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides[J]. Catalysis Today, 2008, 130(1): 221-230 |