石油炼制与化工 ›› 2015, Vol. 46 ›› Issue (8): 90-95.

• 控制与优化 • 上一篇    下一篇

采用人工神经网络方法建立加氢裂化反应体系模型

王天宇1,刘忠保2,黄明富3,李国庆2   

  1. 1. 中海石油炼化有限责任公司惠州炼化分公司
      2. 华南理工大学化学与化工学院
      3. 中国石油规划总院
  • 收稿日期:2014-12-15 修回日期:2015-03-18 出版日期:2015-08-12 发布日期:2015-07-27
  • 通讯作者: 王天宇 E-mail:wangty2@cnooc.com.cn

MODELING VGO HYDROCRACKING PROCESS BY BP-ANN TECHNOLOGY

  • Received:2014-12-15 Revised:2015-03-18 Online:2015-08-12 Published:2015-07-27

摘要: 本文用BP神经网络技术建立某2.80 Mt/a蜡油高压加氢裂化装置反应系统,较好的预测了原料量、各段反应器进口温度和冷氢导入量对系统产品分布和各段反应器出口温度的影响,模型精度较高,特别是温度预测误差小于0.1 ℃,并具有较好的再现性及泛化能力,可以用于指导生产操作。

Abstract: The highly complexity of petroleum hydrocracking process results in the application of artificial neural network (ANN) in this field. In this paper a BP-ANN was used to model a VGO hydrocracking unit with a capacity of 2.80 Mt/a. The effect of feed rate, inlet temperatures of reactors, and amount of quench H2 used on product distribution and outlet temperatures of reactors were well predicted by the model. The results show that the model has a higher accuracy, especially in the prediction of temperatures (less than 0.1 ℃ ) and a good ability of reproducibility and generalization ability and that the model is able to guide practical operation.