石油炼制与化工 ›› 2017, Vol. 48 ›› Issue (11): 95-98.

• 控制与优化 • 上一篇    下一篇

基于人工神经网络的常压塔顶油气系统腐蚀预测

李昊,王宁,潘岩,晋西润,葛玉龙,马方义,左甜   

  1. 中海油炼油化工科学研究院
  • 收稿日期:2017-04-28 修回日期:2017-05-18 出版日期:2017-11-12 发布日期:2017-10-25
  • 通讯作者: 李昊 E-mail:lihao27@cnooc.com.cn
  • 基金资助:
     

CORROSION PREDICTION FOR OIL AND GAS SYSTEM AT TOP OF ATMOSPHERIC PRESSURE TOWER BY ARTIFICIAL NEURAL NETWORK

  1.  
  • Received:2017-04-28 Revised:2017-05-18 Online:2017-11-12 Published:2017-10-25
  • Supported by:
     

摘要: 针对某公司常减压蒸馏装置低温部位腐蚀情况进行了分析。根据一段时间内塔顶污水中检测到的腐蚀检测数据,通过人工神经网络建立了腐蚀速率预测模型。该模型以常压塔塔顶流出污水的pH、氯离子浓度、铁离子浓度、硫化物浓度作为输入数据,以平均腐蚀速率为输出数据。结果表明,该模型预测结果与实际结果的相对误差在10%左右,平均相对误差为7.5%,具有良好的预测精度,能够反映常压塔塔顶污水中各腐蚀检测数据与腐蚀速率的关系。

关键词: 常压塔顶, 腐蚀, 人工神经网络, 腐蚀速率, 预测

Abstract: Based on the data of low temperature corrosion of atmospheric and vacuum distillation unit, a model was established for predicting corrosion rate of oil and gas system at top of atmospheric tower by artificial neural network. The corrosion factors of pH value, the concentrations of chloride and iron ion as well as sulfide were used as input data and the average corrosion rates as output data. The experimental results showed that the model has good prediction accuracy with a relative error of 10% and average relative error of 7.5%, indicating that the model can reflect the relationship between corrosion factors and corrosion rate predicted.

Key words: top of atmospheric tower, corrosion, artificial neural network, corrosion rate, prediction

中图分类号: