[1] 潘项. 国内丙烯市场发展现状[J]. 环球市场信息导报, 2017, (27):8-8.
[2] 高伟, 赵亚龙. 丙烷脱氢制丙烯工艺及技术要点分析[J]. 化工设计通讯, 2017, 43(11):139.
[3] 许艺. 丙烷脱氢制丙烯经济及技术分析[J]. 化工时刊, 2003,17(3):50-53.
[4] 王培超, 曹世凌, 伍宝洲, 等. 丙烷脱氢制丙烯技术的工业应用探讨[J]. 中外能源, 2015, 20(5):85-90.
[5] 肖锦堂, 王开岳. 国外低磷烷烃脱氢工艺比较[J]. 石油与天然气化工, 1994, 4:218-224.
[6] 魏飞, 山尼, 汤效平, 等,用于低碳烷烃脱氢制烯烃的催化剂及其制备方法和应用[P].中国专利:CN101623633, 2010-01-13.
[7] 王馨. 中国石油大学开发自主丙烷脱氢技术[J]. 石油化工, 2016, 11:1336-1336.
[8] 张伟清. KBR公司推出新型丙烷脱氢技术[J]. 石油炼制与化工, 2019, 82-82.
[9] 姜冬宇, 吴文海, 吴省, 等. 低碳烷烃脱氢Pt系催化剂的研究进展[J]. 化学世界, 2014, 55(6):373-378.
[10] 谭亚南, 韩伟, 何霖, 等. 丙烷脱氢催化反应中转化率与温度、压力及空速的关系式[J]. 天然气化工(C1化学与化工), 2015, 40(5):58-61.
[11] Corker J, Lefebvre F, Lecuyer C, et al. Catalytic cleavage of the C-H and C-C bonds of alkanes by surface organometallic chemistry: an EXAFS and IR characterization of a Zr-H catalyst[J]. Science, 2005, 271(5251):966-969.
[12] Sakakura T, Sodeyama T, Tanaka M. ChemInform abstract: terminal selective C-H activation: dehydrogenation of n-Alkane to 1-alkene[J]. Cheminform, 1989, 20(2).
[13] Lobera M P, Téllez C, Herguido J, et al. Transient kinetic modelling of propane dehydrogenation over a Pt-Sn-K/Al2O3 catalyst[J]. Applied Catalysis A General, 2008, 349(1):156-164
[14] Li Q, Sui Z, Zhou X, et al. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst[J]. Applied Catalysis A General, 2011, 398(1):18-26.
[15] 杨维慎, 吴荣安, 林励吾. Pt-Sn/Al2O3催化剂中Sn的存在状态对丙烷脱氢反应的影响[J]. 催化学报, 1987, 8(4):345-351.
[16] Yang M L, Zhu Y A, Fan C, et al. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites[J]. Physical Chemistry Chemical Physics, 2011, 13(8):3257-3267.
[17] Yang M L, Zhu Y A, Fan C, et al. Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt(111)[J]. Journal of Molecular Catalysis A Chemical, 2010, 321(1):42-49.
[18] 李春义, 王国玮. 丙烷/异丁烷脱氢Pt系催化剂的研究进展Ⅲ.Pt的存在形态、颗粒大小与脱氢性能[J]. 石化技术与应用, 2017, 35(3):171-176.
[19] 余长林, 徐恒泳, 葛庆杰, 等. Zn对Pt-Sn/γ-Al2O3催化剂中Sn的活性状态及丙烷脱氢反应的影响[J]. 高等学校化学学报, 2006, 27(8):1492-1495.
[20] Dong W S, Wang X K, Peng S Y. Effects of promoters on catalytic performance of Pt-Sn/MgAl2O4 catalyst for propane dehydrogenation in the presence of steam[J]. Journal of Natural Gas Chemistry, 1997, 1:37-43.
[21] 郭小妮.尖晶石型过渡金属复合氧化物的制备及性能研究[D]. 重庆大学, 2007.
[22] Vu B K, Song M B, Ahn I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation[J]. Applied Catalysis A General, 2011, 400(s1-2):25-33.
[23] Nagai Y, Hirabayashi T, Dohmae K, et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction[J]. Journal of Catalysis, 2006, 242(1):103-109.
[24] Jiang F, Zeng L, Li S, et al. Propane dehydrogenation over Pt/TiO2-Al2O3 Catalyst[J]. Acs Catalysis, 2015, 5(1):438-447.
[25] 斯泰尔斯. 催化剂载体与负载型催化剂[M]. 中国石化出版社, 1992.
[26] Kley I, Traa Y. Influence of acid sites on the propene selectivity during propane dehydrogenation on zeolite Pt-Zn-Na/MCM-22[J]. Microporous & Mesoporous Materials, 2012, 164:145-147.
[27] 张一卫. 以ZSM-5分子筛为载体的新型丙烷脱氢催化剂的研究[D]. 东南大学, 2006.
[28] Zhang Y, Zhou Y, Qiu A, et al. Propane dehydrogenation on PtSn/ZSM-5 catalyst: effect of tin as a promoter[J]. Catalysis Communications, 2006, 7(11):860-866.
[29] Zhou H, Gong J, Xu B, et al. PtSnNa/SUZ-4: an efficient catalyst for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2017, 38(3):529-536.
[30] 刘乃立, 杨锡尧, 庞礼. Pt-Sn/Al2O3中Sn对Pt的脱氢性能的调变作用[J]. 催化学报, 1985, 6(1):8-13.
[31] 谢安惠. Sn在Pt-Sn/Al2O3催化剂中的状态和作用[J]. 催化学报, 1982(2):9-16.
[32] 吴文海, 李应成, 吴省, 等. 锡组分状态对Pt/Al2O3丙烷脱氢性能的影响[J]. 化学反应工程与工艺, 2009, 25(1):41-45.
[33] Li Y X, Stencel J M, Davis B H. State of Sn in Pt-Sn-alumina catalyst: XPS study[J]. Reaction Kinetics & Catalysis Letters, 1988, 37(2):273-280.
[34] Praserthdam P, Mongkhonsi T, Kunatippapong S, et al. Determination of coke deposition on metal active sites of propane dehydrogenation catalysts[J]. Studies in Surface Science & Catalysis, 1997, 111(111):153-158.
[35] Mongkhonsi T, Prasertdham P, Saengpoo A, et al. Roles of Pt and alumina during the combustion of coke deposits on propane dehydrogenation catalysts[J]. Korean Journal of Chemical Engineering, 1998, 15(5):486-490.
[36] 田部浩三, 郑禄彬. 新固体酸和碱及其催化作用[M]. 化学工业出版社, 1992.
[37] 孙利利. 助剂硼对Pt系丙烷脱氢催化剂性能的调控[D]. 华东理工大学, 2018.
[38] Xue N, Nie L, Fang D, et al. Synergistic effects of tungsten and phosphorus on catalytic cracking of butene to propene over HZSM-5[J]. Applied Catalysis A General, 2009, 352(1):87-94.
[39] Yu C, Ge Q, Xu H, et al. Effects of Ce addition on the Pt-Sn/Al2O3 catalyst for propane dehydrogenation to propylene[J]. Applied Catalysis A General, 2006, 315:58-67.
[40] Pisduangdaw S, Praserthdam P, Panpranot J, et al. One-step preparation of Pt-Ce and Pt-Sn-Ce/Al2O3 catalysts by flame spray pyrolysis in propane dehydrogenation[J]. Reaction Kinetics Mechanisms & Catalysis, 2014, 113(1):149-158.
[41] Zhang Y, Zhou Y, Liu H, et al. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Applied Catalysis A General, 2007, 333(2):202-210.
[42] Schweitzer N M, Bo H, Das U, et al. Propylene hydrogenation and propane dehydrogenation by a single-Site Zn2+ on silica catalyst[J]. Acs Catalysis, 2016, 4(4):1091-1098.
[43] Hu B, Getsoian A, Schweitzer N M, et al. Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism[J]. Journal of Catalysis, 2015, 322:24-37.
[44] Hu B, Schweitzer N M, Zhang G, et al. Isolated FeII on silica as a selective propane dehydrogenation catalyst[J]. Acs Catalysis, 2015, 5(6):3494-3503.
[45] Kim W, So J, Choi S W, et al. Hierarchical Ga-MFI catalysts for propane dehydrogenation[J]. Chemistry of materials, 2017, 29(17):7213-7222.
[46] Sun Y, Tao L, You T, et al. Effect of sulfation on the performance of Fe2O3/Al2O3 catalyst in catalytic dehydrogenation of propane to propylene[J]. Chemical Engineering Journal, 2014, 244(10):145-151.
[47] Sun Y, Gao Y, Wu Y, et al. Effect of sulfate addition on the performance of Co/Al2O3 catalysts in catalytic dehydrogenation of propane[J]. Catalysis Communications, 2015, 60:42-45.
[48] Wang R, Sun X Y, Zhang B S, et al. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core-shell sp(2)/sp(3) nanocomposite structure[J]. Chemistry-A European Journal, 2014, 20(21):6324-6331.
[49] Wang G, Zhang H, Wang H, et al. The role of metallic Sn species in catalytic dehydrogenation of propane: active component rather than only promoter[J]. Journal of Catalysis, 2016, 344:606-608.
[50] Wang G, Zhang H, Zhu Q, et al. Sn-containing hexagonal mesoporous silica (HMS) for catalytic dehydrogenation of propane: an efficient strategy to enhance stability[J]. Journal of Catalysis, 2017, 351:90-94.
[51] Wang H, Wang H, Li X, et al. Nature of active tin species and promoting effect of nickle in silica supported tin oxide for dehydrogenation of propane[J]. Applied Surface Science, 2017, 407:456-462.
[52] Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364.
[53] Wu T, Yu Q, Qin Q. Energy analysis of chemical looping oxidative dehydrogenation of propane[J]. Petroleum Science & Technology, 2018, 36(4):1-7.
|