[1] 姚淑娟. 气体分子在过度金属催化剂上吸附行为的密度泛函理论研究[D]. 北京: 中国地质大学, 2009.[2] Baseh H, Newton M D, Moskowitz J W. The electronic structure of small nickel atom clusters [J]. J. Chem. Phys., 1980, 73 (9):4492-4510.[3] Franceseca B, Rieeardo F. Structural Properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys., 2005, 77 (l): 371-423.[4] Estiu G L, Cory M G, Zerner M Projected Unrestricted Hartree-Fork Calculations and the Magnetism of Large Nickel Cluster[J]. J. Phys. Chem. A, 2000, 104(2): 233-242.[5] Estiu G L, Zerner M C.Struetural, Electronic, and Magnetic Properties of small Ni Clusters[J]. J. Chem. Phys., 1996, 100 (42):16874-16880.[6] 孙强,谢建军,张涛. H2在Ni,Pd与Cu表面的解离吸附[J]. 物理学报,1995(11):1805-1813.[7] 赵云. H2在Pdn(n=4,6,13,19,38)团簇上吸附解离的DFT研究[D]. 大连: 大连理工大学, 2012.[8] 田相桂, 张跃, 杨泰生. H2在WO3表面解离吸附反应的第一性原理研究(英文)[J]. 物理化学学报, 2012 (05): 1063-1069.[9] 孔学, 刘东, 王宗贤, 等. Mo/γ-Al2O3表面H2的吸附性能[J]. 石油学报(石油加工), 2005, 21 (6): 80-85.[10] Deng J, Wang H. Adsorption history dependence of the state of chemisorbed Co on Fe(1 1 0)[J]. ACTA PHYSICO-CHIMICA SINICA. 1993, 5(9): 589-593.[11] Jiang D E, Carter E A. Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles[J]. Surface Science. 2003, 547(1-2): 85-98.[12] Xie W, Peng L, Peng D, et al. Processes of H2 adsorption on Fe(110) surface: A density functional theory study[J]. Applied Surface Science. 2014.[13] Jiang P, Zappone M, Bernasek S L. The adsorption of H2 on Fe(111) studied by thermal energy atom scattering[J]. The Journal of Chemical Physics. 1993, 99(10): 8126.[14] Huo C F, Li Y W, Wang J, et al. Surface structure and energetics of hydrogen adsorption on the Fe(111) surface[J]. J Phys Chem B. 2005, 109(29): 14160-14167.[15] 刘红艳,章日光,阎瑞霞,等. CH4在Fe(111)上解离的DFT研究[J]. 太原理工大学学报. 2012, 3(43): 319-328.[16] Downing C A, Ahmady B, Catlow C R, et al. The interaction of hydrogen with the {010} surfaces of Mg and Fe olivine as models for interstellar dust grains: a density functional theory study[J]. Philos Trans A Math Phys Eng Sci. 2013, 371(1994): 20110592.[17] 郭玉宝, 朱红, 杨儒. H2在Pt(111)表面吸附及电催化的密度泛函理论[J]. 北京工业大学学报. 2016, 42(11): 1756-1760.[18] 陈树滋, 金成昌. H2在Ni(100)面吸附及重组脱附的经典轨迹研究[J]. 化学研究与应用. 1992, 4(4): 45-49.[19] 周鲁, 刘淑清, 彭毅. H2分子在Ni(110)表面吸附的位能面研究[J]. 分子催化. 1987, 1(1):15-20.[20] 周鲁,孙本繁,吕日昌. H2分子在Ni(100)、(110)、(111)单晶表面吸附研究[J]. 成都科技大学学报. 1996(03): 49-53.[21] 孙强,谢建军,张涛. H2在Ni, Pd与Cu表面的解离吸附[J]. 物理学报. 1995(11): 1805-1813.[22] Deng D H, Yu L, Chen X Q, et al. Iron Encapsulated within Pod‐like Carbon Nanotubes for Oxygen Reduction Reaction[J]. Angew Chem Int Ed, 2013, 52: 371.[23] 杨刚,刘宪春,韩秀文,等. Fe/ZSM-5分子筛:苯羟基化活性中心的理论研究[J]. 分子催化. 2007, 21: 291-292.[24] Chen X, Deng D, Pan X, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. CHINESE JOURNAL OF CATALYSIS. 2015, 9(36): 1631-1637. |