[1] 田春荣. 2017年中国石油进出口状况分析 [J]. 国际石油经济, 2018, 26(3): 10-20.
[2] MORAES R, THOMAS K, THOMAS S, et al. Ring opening of decalin and methylcyclohexane over alumina-based monofunctional WO3/Al2O3 and Ir/Al2O3 catalysts [J]. Journal of Catalysis, 2012, 286(1): 62-77.
[3] KUBI?KA D, KUMAR N, M?KI-ARVELA P, et al. Ring opening of decalin over zeolitesI. Activity and selectivity of proton-form zeolites [J]. Journal of Catalysis, 2004, 222(1): 65-79.
[4] CORMA A, GONZáLEZ-ALFARO V, ORCHILLéS A V. Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil [J]. Journal of Catalysis, 2001, 200(1): 34-44.
[5] SANTIKUNAPORN M, HERRERA J, JONGPATIWUT S, et al. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts [J]. Journal of Catalysis, 2004, 228(1): 100-13.
[6] LUCAS N, BORDOLOI A, AMRUTE A P, et al. A comparative study on liquid phase alkylation of 2-methylnaphthalene with long chain olefins using different solid acid catalysts [J]. Applied Catalysis A: General, 2009, 352(1-2): 74-80.
[7] MOULI K C, SUNDARAMURTHY V, DALAI A K. A comparison between ring-opening of decalin on Ir-Pt and Ni-Mo carbide catalysts supported on zeolites [J]. Journal of Molecular Catalysis A: Chemical, 2009, 304(1-2): 77-84.
[8] HAAS A, RABL S, FERRARI M, et al. Ring opening of decalin via hydrogenolysis on Ir/- and Pt/silica catalysts [J]. Applied Catalysis A: General, 2012, 425-426(1): 97-109.
[9] HE T, WANG Y, MIAO P, et al. Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur [J]. Fuel, 2013, 106(1): 365-71.
[10] MCVICKER G. Selective Ring Opening of Naphthenic Molecules [J]. Journal of Catalysis, 2002, 210(1): 137-48.
[11] KUBI?KA D, KUMAR N, M?KI-ARVELA P, et al. Ring opening of decalin over zeolitesII. Activity and selectivity of platinum-modified zeolites [J]. Journal of Catalysis, 2004, 227(2): 313-27.
[12] LECARPENTIER S, VANGESTEL J, THOMAS K, et al. Study of Ir/WO3/ZrO2–SiO2 ring-opening catalysts: Part II. Reaction network, kinetic studies and structure–activity correlation [J]. Journal of Catalysis, 2008, 254(1): 49-63.
[13] KUBI?KA D, SALMI T, TIITTA M, et al. Ring-opening of decalin – Kinetic modelling [J]. Fuel, 2009, 88(2): 366-73.
[14] KUMAR N, KUBICKA D, GARAY A L, et al. Synthesis of Ru-modified MCM-41 Mesoporous Material, Y and Beta Zeolite Catalysts for Ring Opening of Decalin [J]. Topics in Catalysis, 2009, 52(4): 380-6.
[15] DU M, QIN Z, GE H, et al. Enhancement of Pd–Pt/Al2O3 catalyst performance in naphthalene hydrogenation by mixing different molecular sieves in the support [J]. Fuel Processing Technology, 2010, 91(11): 1655-61.
[16] KANGAS M, KUBI?KA D, SALMI T, et al. Reaction Routes in Selective Ring Opening of Naphthenes [J]. Topics in Catalysis, 2010, 53(15-18): 1172-5.
[17] KUBI?KA D, KANGAS M, KUMAR N, et al. Ring Opening of Decalin Over Zeolite-Supported Iridium Catalysts [J]. Topics in Catalysis, 2010, 53(19-20): 1438-45.
[18] PARK J-W, THOMAS K, VAN GESTEL J, et al. Study of Ir/WO3/Al2O3 ring opening catalysts [J]. Applied Catalysis A: General, 2010, 388(1-2): 37-44.
[19] RABL S, SANTI D, HAAS A, et al. Catalytic ring opening of decalin on Ir- and Pt-containing zeolite Y – Influence of the nature of the charge-compensating alkali cations [J]. Microporous and Mesoporous Materials, 2011, 146(1-3): 190-200.
[20] D’IPPOLITO S A, GUTIERREZ L B, PIECK C L. Optimal Ir/Pt ratio for the ring opening of decalin in zeolite supported catalysts [J]. Applied Catalysis A: General, 2012, 445-446(1): 195-203.
[21] JAROSZEWSKA K, MASALSKA A, B?CZKOWSKA K, et al. Conversion of decalin and 1-methylnaphthalene over AlSBA-15 supported Pt catalysts [J]. Catalysis Today, 2012, 196(1): 110-8.
[22] KUMAR N, M?KI-ARVELA P, MUSAKKA N, et al. On the way to improve cetane number in diesel fuels: Ring opening of decalin over Ir-modified embedded mesoporous materials [J]. Catalysis in Industry, 2013, 5(2): 105-22.
[23] MORAES R, THOMAS K, THOMAS S, et al. Ring opening of decalin and methylcyclohexane over bifunctional Ir/WO3/Al2O3 catalysts [J]. Journal of Catalysis, 2013, 299(1): 30-43.
[24] SANTI D, HOLL T, CALEMMA V, et al. High-performance ring-opening catalysts based on iridium-containing zeolite Beta in the hydroconversion of decalin [J]. Applied Catalysis A: General, 2013, 455(1): 46-57.
[25] UPARE D P, SONG B J, LEE C W. Hydrogenation of Tetralin over Supported Ni and Ir Catalysts [J]. Journal of Nanomaterials, 2013, 2013(1): 1-6.
[26] ARVE K, M?KI-ARVELA P, ER?NEN K, et al. Utilisation of a multitubular reactor system for parallel screening of catalysts for ring opening of decalin in continuous mode [J]. Chemical Engineering Journal, 2014, 238(1): 3-8.
[27] D’IPPOLITO S A, ESPECEL C, VIVIER L, et al. Influence of the Br?nsted acidity, SiO2/Al2O3 ratio and Rh–Pd content on the ring opening: Part I. Selective ring opening of decalin [J]. Applied Catalysis A: General, 2014, 469(1): 532-540.
[28] D’IPPOLITO S A, ESPECEL C, VIVIER L, et al. Influence of the Br?nsted acidity, SiO2/Al2O3 ratio and Rh–Pd content on the ring opening. Part II. Selective ring opening of methylcyclohexane [J]. Applied Catalysis A: General, 2014, 469(1): 541-549.
[29] MONTEIRO C A A, COSTA D, ZOTIN J L, et al. Effect of metal–acid site balance on hydroconversion of decalin over Pt/Beta zeolite bifunctional catalysts [J]. Fuel, 2015, 160(1): 71-79.
[30] HASSAN F, AL-DURI B, WOOD J. Effect of supercritical conditions upon catalyst deactivation in the hydrogenation of naphthalene [J]. Chemical Engineering Journal, 2012, 207-208(1): 133-141.
[31] NASSREDDINE S, MASSIN L, AOUINE M, et al. Thiotolerant Ir/SiO2–Al2O3 bifunctional catalysts: Effect of metal–acid site balance on tetralin hydroconversion [J]. Journal of Catalysis, 2011, 278(2): 253-265.
[32] ARRIBAS M A A, CONCEPCIóN P, MART??NEZ A N. The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts [J]. Applied Catalysis A: General, 2004, 267(1-2): 111-119.
[33] MANOLI J M, DA COSTA P, BRUN M, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over promoted (Ni,P) alumina-supported molybdenum carbide catalysts: activity and characterization of active sites [J]. Journal of Catalysis, 2004, 221(2): 365-377.
[34] AL-MEGREN H A, GONZáLEZ-CORTéS S L, XIAO T, et al. A comparative study of the catalytic performance of Co-Mo and Co(Ni)-W carbide catalysts in the hydrodenitrogenation (HDN) reaction of pyridine [J]. Applied Catalysis A: General, 2007, 329(1): 36-45.
[35] SUNDARAMURTHY V, DALAI A K, ADJAYE J. Effect of phosphorus addition on the hydrotreating activity of NiMo/Al2O3 carbide catalyst [J]. Catalysis Today, 2007, 125(3-4): 239-247.
[36] KIM C H, YOON W L, LEE I C, et al. The effect of Ni loading and the sulfidation temperature on the structure and catalytic activity of Ni-W hydrodesulfurization catalysts [J]. Applied Catalysis a-General, 1996, 144(1-2): 159-75.
[37] YUAN L, GUO S, LI Z, et al. Ring opening of decalin over bifunctional Ni–W carbide/Al2O3–USY catalysts and monofunctional acid Ni–W oxide/Al2O3–USY [J]. RSC Adv, 2017, 7(16): 9446-9455.
[38] CHEN X, CLET G, THOMAS K, et al. Correlation between structure, acidity and catalytic performance of WOx/Al2O3 catalysts [J]. Journal of Catalysis, 2010, 273(2): 236-244.
[39] TUREK A M, WACHS I E, DECANIO E. Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study [J]. The Journal of Physical Chemistry, 1992, 96(12): 5000-5007.
[40] SHAO M, CUI H, GUO S, et al. Preparation and characterization of NiW supported on Al-modified MCM-48 catalyst and its high hydrodenitrogenation activity and stability [J]. RSC Adv, 2016, 6(66): 61747-61757.
[41] CUI G, WANG J, FAN H, et al. Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: Effect of metal loading [J]. Fuel Processing Technology, 2011, 92(12): 2320-7.
[42] ZUO D, VRINAT M, NIE H, et al. The formation of the active phases in sulfided NiW/Al2O3 catalysts and their evolution during post-reduction treatment [J]. Catalysis Today, 2004, 93-95(1): 751-60.
|