[1] Giannetto G, Monque R, Galiasso R, et al. Transformation of LPG into aromatic hydrocarbons and hydrogen over zeolite catalysts[J]. Catalysis Reviews: Science and Engineering, 1994, 36(2):271-304.
[2] 李涛. 碳一化工的技术、产品现状及发展方向[J]. 化工进展, 2012,31(S1):124-128.
[3] 邵平. 甲苯甲醇合成对二甲苯的新技术及市场分析[J]. 炼油与化工, 2012,23(5):6-8.
[4] Li Xiujie, Liu Shenglin, Zhu Xiangxue, et al. Effects of zinc and magnesium addition to ZSM-5 on the catalytic performances in 1-hexene aromatization reaction[J]. Catalysis Letters, 2011, 141(7): 1498–1505.
[5] Abdelsayed V, Smith M W, Shekhawat D. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization[J]. Applied Catalysis A:General, 2015, 505(25): 365–374.
[6] Li Yuning, Liu Shenglin, Xie Sujuan, et al. Promoted metal utilization capacity of alkali-treated zeolite: Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization[J]. Applied Catalysis A: General, 2009, 360(1): 8–16.
[7] 田涛, 骞伟中, 汤效平, 等. 甲醇芳构化反应中Ag/ZSM-5催化剂的失活特性[J]. 物理化学学报, 2010, 26(12): 3305-3309.
[8] 王恒强, 张成华, 吴宝山, 等. Ga、Zn改性方法对HZSM-5催化剂丙烯芳构化性能的影响[J]. 燃料化学学报, 2010, 38(5): 576-581.
[9] Wei Yingxu, Liu Zhongmin, Wang Gongwei, et al. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature[J]. Studies in Surface Science and Catalysis, 2005, 158(B): 1223-1230.
[10] Lu Jiangyin, Zhao Zhen, Xu Chunming, et al. FeHZSM-5 molecular sieves – highly active catalysts for catalytic cracking of isobutene to produce ethylene and propylene[J]. Catalysis Communications, 2006, 7(4): 199–203.
[11] Sadrameli S. M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review[J]. Fuel, 2016, 173(1): 285-297.
[12] Wang Guowei, Wang Haoren, Zhang Huanling, et al. Highly Selective and Stable NiSn/SiO2 Catalyst for Isobutane Dehydrogenation: Effects of Sn Addition[J]. Chemcatchem Catalysis, 2016, 8(19): 3137-3145.
[13] Zhang Guiquan, Bai Ting, Chen Tengfei, et al. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940.
[14] Song Chao, Li Xiujie, Zhu Xiangxue, et al. Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol [J]. Applied Catalysis A: General, 2016, 519(1): 48-55.
[15] Su Xiaofang, Zan Wang, Bai Xuefeng, et al. Synthesis of microscale and nanoscale ZSM-5 zeolites: effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance [J]. Catalysis Science & Technology, 2017, 7(4): 1943-1952.
[16] Almutairi S M T, Mezari B, Magusin P C M M, et al. Structure and reactivity of Zn-modified ZSM-5 zeolites: the importance of clustered cationic Zn complexes [J]. ACS Catalysis, 2012, 2(1): 71-83.
[17] 尹双凤, 陈懿, 林洁, 等. 正己烷在Zn/HZSM-5上芳构化反应机理的探讨[J]. 工业催化, 2002, 10(1): 34-37.
[18] 程谟杰, 杨亚书. ZnHZSM-5上脱氢环化芳构化过程的探讨[J]. 分子催化, 1996, 10(6): 418-422.
[19] Bi Yi, Wang Yingli, Chen Xin, et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chinese Journal of Catalysis, 2014, 35(10): 1740-1751.
[20] 田涛, 骞伟中, 孙玉建, 等. Ag/ZSM-5催化剂上甲醇芳构化程[J]. 现代化工, 2009, 29(1): 55-58.
[21] Marco C, Qian H, Yulia R, et al. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catalysis Science & Technology, 2012, 2(1): 105-112.
|