石油炼制与化工 ›› 2020, Vol. 51 ›› Issue (9): 110-118.
• 综述 • 上一篇
姜慧芸1,孙冰1,金艳2,冯俊杰1,田松柏3
收稿日期:
2020-03-16
修回日期:
2020-04-14
出版日期:
2020-09-12
发布日期:
2020-09-27
通讯作者:
孙冰
E-mail:sunb.qday@sinopec.com
基金资助:
Received:
2020-03-16
Revised:
2020-04-14
Online:
2020-09-12
Published:
2020-09-27
摘要: 基于微流控芯片技术的检测方法由于样品和试剂用量少、分析速度快,以及在多参数集成检测、自动化、一体化、便携化等方面拥有巨大潜力等特点而被逐步用于水质检测,成为近年来的一大研究热点。通过对微流控技术在芯片的材质及加工方法、驱动与控制、检测方法等方面发展的介绍,分析了微流控芯片技术在便携化、集成化和实时化方面面临的问题。简述了微流控芯片在水中有机物、氮磷类营养盐、重金属、细菌及微生物等检测中的应用,并对其发展前景进行了展望。
姜慧芸 孙冰 金艳 冯俊杰 田松柏. 微流控芯片技术及其在水质检测中的应用进展[J]. 石油炼制与化工, 2020, 51(9): 110-118.
[1]Manz A, Graber N, Widmer H M.Miniaturized total chemical analysis systems: a novel concept for chemical sensing[J].Sensors and actuators B: Chemical, 1990, 1(1-6):244-248 [2] Sugioka K, Cheng Y.Fabrication of Microfluidic Structures in Glass[M].Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications, 2014, 1(1):35-48 [3] Culbertson C T, Sibbitts J, Sellens K, et al.Fabrication of Glass Microfluidic Devices[M]//Microfluidic Electrophoresis. Humana Press, New York, NY, 2019: 1-12. [4]Qi Z B, Xu L, Xu Y, et al.Disposable silicon-glass microfluidic devices: precise,robust and cheap[J].Lab on a Chip, 2018, 18(24):3872-3880 [5] Kim S I, Kim J, Koo C, et al.Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process[C]//Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVIII. International Society for Optics and Photonics, 2018, 10522: 105221V. [6]Wlodarczyk K L, Hand D P, Maroto-Valer M M.Maskless,rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser[J].Scientific Reports, 2019, 9(1):1-13 [7]Duffy D C, McDonald J C, Schueller O J A, et al.Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)[J].Analytical chemistry, 1998, 70(23):4974-4984 [8]Ayoib A, Hashim U, Gopinath S C B, et al.Design and fabrication of PDMS microfluidics device for rapid and label-free DNA detection[J].Applied Physics A, 2020, 126(3):1-8 [9]Martinez A W, Phillips S T, Butte M J, et al.Patterned paper as a platform for inexpensive,low‐volume,portable bioassays[J].Angewandte Chemie International Edition, 2007, 46(8):1318-1320 [10]Carrilho E, Phillips S T, Vella S J, et al.Paper microzone plates[J].Analytical chemistry, 2009, 81(15):5990-5998 [11]Li X, Tian J, Shen W.Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors[J].Cellulose, 2010, 17(3):649-659 [12]Zhao M, Li H, Liu W, et al.Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodeviceBiosensors and Bioelectronics,2016,79: 581-588[J].Biosensors and Bioelectronics, 2016, 79(1):581-588 [13]Raj N, Breedveld V, Hess D W.Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching[J].Lab on a Chip, 2019, 19(19):3337-3343 [14]Deng M, Liao C, Wang X, et al.A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis[J].Canadian Journal of Chemistry, 2019, 97(5):373-377 [15]Kang H L, Sim S, Lee Y, et al.Flip chip bonding using ink-jet printing technology[J].Microsystem Technologies, 2019, 25(12):4753-4759 [16]Zhu W J, Feng D Q, Chen M, et al.Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper stripSensors and Actuators B: Chemical,2014,190: 414-418[J].Sensors and Actuators B: Chemical, 2014, 190(1):414-418 [17]Parekh D P, Ladd C, Panich L, et al.D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels[J].Lab on a Chip, 2016, 16(10):1812-1820 [18]Walczak R, Kawa B, Adamski K.Inkjet 3D printed microfluidic device for growing seed root and stalk mechanical characterizationSensors and Actuators A: Physical,2019,297: 111557[J].Sensors and Actuators A: Physical, 2019, 297(1):111557-1 [19]Gong H, Bickham B P, Woolley A T, et al.Custom 3D printer and resin for 18 μm× 20 μm microfluidic flow channels[J].Lab on a Chip, 2017, 17(17):2899-2909 [20]Plamadeala C, Gosain S R, Purkhart S, et al.Three-Dimensional Photonic Structures Fabricated by Two-Photon Polymerization for Microfluidics and Microneedles[J].th International Conference on Transparent Optical Networks ICTON, 2018, 1(1):1-4 [21]Bandopadhyay A, Tripathi D, Chakraborty S.Electroosmosis-modulated peristaltic transport in microfluidic channels[J].Physics of Fluids, 2016, 28(5):052002-1 [22]Miller S, Weiss A A, Heineman W R, et al.Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads[J].Scientific reports, 2019, 9(1):1-11 [23] Banerjee R K, Das D, Al-Rjoub M.Enhanced capture of magnetic microbeads in microfluidic devices using sequentially switched electroosmotic flow: U.S. Patent Application 16/548, 542[P]. 2020-2-20. [24]Ma T, Sun S, Li B, et al.Piezoelectric peristaltic micropump integrated on a microfluidic chipSensors and Actuators A: Physical,2019,292: 90-96[J].Sensors and Actuators A: Physical, 2019, 292(1):90-96 [25]Zhang X, Xia K, Ji A.A portable plug-and-play syringe pump using passive valves for microfluidic applicationsSensors and Actuators B: Chemical,2020,304: 127331.[J].Sensors and Actuators B: Chemical, 2020, 304(1):127331-1 [26]Sibbitts J, Sadeghi J, Culbertson C T.Microelectrophoretic single-cell measurements with microfluidic devicesMethods in enzymology,2019,628: 223-241.[J].Methods in enzymology, 2019, 628(1):223-241 [27]Lee C J, Hsu Y H.Vacuum pouch microfluidic system and its application for thin-film micromixers[J].Lab on a Chip, 2019, 19(17):2834-2843 [28]Visone R, Ugolini G S, Vinarsky V, et al.A Simple Vacuum‐Based Microfluidic Technique to Establish High‐Throughput Organs‐On‐Chip and 3D Cell Cultures at the Microscale[J].Advanced Materials Technologies, 2019, 4(1):1800319-1 [29]Tang S Q, Li K H H, Lee S J, et al.Novel multi-way microvalve with ease of fabrication and integration for microfluidics applicationSensors and Actuators B: Chemical,2019,286: 289-300.[J].Sensors and Actuators B: Chemical, 2019, 286(1):289-300 [30]Le T N, Nguyen V A, Bach G L, et al.Design and Fabrication of a PDMS-Based Manual Micro-Valve System for Microfluidic ApplicationsAdvances in Polymer Technology,2020,2020.[J].Advances in Polymer Technology, 2020, 1(1):1-7 [31]Zhang X, Oseyemi A E.Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery[J].Micromachines, 2019, 10(12):798-804 [32] Madou M J, Kellogg G J.LabCD: a centrifuge-based microfluidic platform for diagnostics[C] //Systems and Technologies for Clinical Diagnostics and Drug Discovery. International Society for Optics and Photonics, 1998, 3259: 80-93. [33]Li T, Fan Y, Cheng Y, et al.An electrochemical Lab-on-a-CD system for parallel whole blood analysis[J].Lab on a Chip, 2013, 13(13):2634-2640 [34]Kong L X, Perebikovsky A, Moebius J, et al.Lab-on-a-CD: A fully integrated molecular diagnostic system[J].Journal of laboratory automation, 2016, 21(3):323-355 [35]Sayad A, Ibrahim F, Uddin S M, et al.A microdevice for rapid,monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platformBiosensors and Bioelectronics,2018,100: 96-104.[J].Biosensors and Bioelectronics, 2018, 100(1):96-104 [36]Silva G, Semiao V, Reis N.Rotating microchannel flow velocity measurements using the stationary micro-PIV technique with application to lab-on-a-CD devicesFlow Measurement and Instrumentation,2019,67: 153-165.[J].Flow Measurement and Instrumentatio, 2019, 67(1):153-165 [37]Rattanarat P, Dungchai W, Cate D M, et al.A microfluidic paper-based analytical device for rapid quantification of particulate chromiumAnalytica chimica acta,2013,800: 50-55.[J].Analytica chimica act, 2013, 800(1):50-55 [38]Henares T G, Yamada K, Takaki S, et al.Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical deviceSensors and Actuators B: Chemical,2017,244: 1129-1137.[J].Sensors and Actuators B: Chemical, 2017, 244(1):1129-1137 [39] Ferreira F T S M, Mesquita R B R, Rangel A O S S.Determination of nitrate and nitrite in human saliva with a specially designed microfluidic paper-based analytical device (μPAD)[C]. XXVI Encontro Nacional da Sociedade Portuguesa de Química, 2019..XXVI Encontro Nacional da Sociedade Portuguesa de Química, 2019, 1(1):- [40]Potter J, Brisk P, Grover W H.Using printer ink color to control the behavior of paper microfluidics[J].Lab on a Chip, 2019, 19(11):2000-2008 [41]Zhang L, Guan L, Lu Z, et al.Barrier-free patterned paper sensors for multiplexed heavy metal detectionTalanta,2019,196: 408-414.[J].Talanta, 2019, 196(1):408-414 [42]Kao Y T, Kaminski T S, Postek W, et al.Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing[J].Lab on a Chip, 2020, 20(1):54-63 [43]Li H, S?rensen J V, Gothelf K V.Quantitative Detection of Digoxin in Plasma Using Small‐Molecule Immunoassay in a Recyclable Gravity‐Driven Microfluidic Chip[J].Advanced Science, 2019, 6(6):1802051-1 [44]Schiphorst J, Saez J, Diamond D, et al.Light-responsive polymers for microfluidic applications[J].Lab on a Chip, 2018, 18(5):699-709 [45]Wang W, Liu X, Xu W, et al.Light-induced microfluidic chip based on shape memory gold nanoparticlespoly (vinyl alcohol) nanocomposites[J].Smart Materials and Structures, 2018, 27(10):105047-105047 [46]Robertson J M, Rodriguez R X, Holmes Jr L R, et al.Thermally driven microfluidic pumping via reversible shape memory polymers[J].Smart Materials and Structures, 2016, 25(8):085043-085043 [47]Bandyopadhyay S, Chakraborty S.Thermophoretically driven capillary transport of nanofluid in a microchannel[J].Advanced Powder Technology, 2018, 29(4):964-971 [48]Peng G, He Q, Lu Y, et al.Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr (III) and Cr (VI) in water samples after solid phase extractionAnalytica chimica acta,2017,955: 58-66.[J].Analytica chimica acta, 2017, 955(1):58-66 [49]Liu C C, Wang Y N, Fu L M, et al.Microfluidic paper-based chip platform for formaldehyde concentration detectionChemical Engineering Journal,2018,332: 695-701.[J].Chemical Engineering Journal, 2018, 332(1):695-701 [50]Su Y, Liang Y, Wu H, et al.A three-dimensional cloth-based microfluidic label-free proximity hybridization-electrochemiluminescence biosensor for ultrasensitive detection of K-ras geneSensors and Actuators B: Chemical,2019,296: 126654.[J].Sensors and Actuators B: Chemical, 2019, 296(1):126654-126654 [51]Kim S C, Jalal U M, Im S B, et al.A smartphone-based optical platform for colorimetric analysis of microfluidic deviceSensors and Actuators B: Chemical,2017,239: 52-59.[J].Sensors and Actuators B: Chemical, 2017, 239(1):52-59 [52]Xie G L, Yu H, Deng M H, et al.A colorimetric microfluidic sensor made by a simple instrumental-free prototyping process for sensitive quantitation of copper[J].Chemical Papers, 2019, 73(6):1509-1517 [53]Deng M, Liao C, Wang X, et al.A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis[J].Canadian Journal of Chemistry, 2019, 97(5):373-377 [54]Kudo H, Maejima K, Hiruta Y, et al.Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of LactoferrinSLAS TECHNOLOGY: Translating Life Sciences Innovation,2019: 2472630319884031.[J].SLAS TECHNOLOGY: Translating Life Sciences Innovation, 2019, 24(1):66-69 [55]Deng M, Liao C, Wang X, et al.A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis[J].Canadian Journal of Chemistry, 2019, 97(5):373-377 [56]Wongwilai W, Jayawardane B M, Kolev S D, et al.Comparison of Some Modern IT Equipment as Detectors for Microfluidic Paper-based Determination of Phosphate[J].Chiang Mai Journal of Science, 2016, 43(1):1230-1236 [57]Akhtar M H, Hussain K K, Gurudatt N G, et al.Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensorBiosensors and Bioelectronics,2017,98: 364-370.[J].Biosensors and Bioelectronics, 2017, 98(1):364-370 [58]Agustini D, Fedalto L, Agustini D, et al.A low cost,versatile and chromatographic device for microfluidic amperometric analysesSensors and Actuators B: Chemical,2020,304: 127117.[J].Sensors and Actuators B: Chemical, 2020, 304(1):127117-127117 [59]Townsend A D, Sprague R S, Martin R S.Microfluidic Device Using a Gold Pillar Array and Integrated Electrodes for On‐chip Endothelial Cell Immobilization,Direct RBC Contact,and Amperometric Detection of Nitric Oxide[J].Electroanalysis, 2019, 31(8):1409-1415 [60]Quero R F, Bressan L P, da Silva J A F, et al.A novel thread-based microfluidic device for capillary electrophoresis with capacitively coupled contactless conductivity detectionSensors and Actuators B: Chemical,2019,286: 301-305.[J].Sensors and Actuators B: Chemical, 2019, 286(1):301-305 [61]Duarte L C, Figueredo F, Ribeiro L E B, et al.Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detectionAnalytica chimica acta,2019,1071: 36-43.[J].Analytica chimica acta, 2019, 1071(1):36-43 [62]Xue Q, Foret F, Dunayevskiy Y M, et al.Multichannel microchip electrospray mass spectrometry[J].Analytical chemistry, 1997, 69(3):426-430 [63]Jin D Q, Zhu Y, Fang Q.Swan probe: a nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate[J].Analytical chemistry, 2014, 86(21):10796-10803 [64]Zhao Y, Tang M, Liu F, et al.Highly Integrated Microfluidic Chip Coupled to Mass Spectrometry for Online Analysis of Residual Quinolones in Milk[J].Analytical Chemistry, 2019, 91(21):13418-13426 [65]Bai J, Zhou B.Titanium dioxide nanomaterials for sensor applications[J].Chemical reviews, 2014, 114(19):10131-10176 [66]Liang L, Yin J, Bao J, et al.Preparation of Au nanoparticles modified TiO2 nanotube array sensor and its application as chemical oxygen demand sensor[J].Chinese Chemical Letters, 2019, 30(1):167-170 [67]Mu Q, Li Y, Zhang Q, et al.TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis[J].Sensors and Actuators B: Chemical, 2011, 155(2):804-809 [68]Heng W, Zhang W, Zhang Q, et al.Photoelectrocatalytic microfluidic reactors utilizing hierarchical TiO2 nanotubes for determination of chemical oxygen demand[J].RSC advances, 2016, 6(55):49824-49830 [69]Foan L, El Sabahy J, Ricoul F, et al.Development of a new phase for lab-on-a-chip extraction of polycyclic aromatic hydrocarbons from waterSensors and Actuators B: Chemical,2018,255: 1039-1047.[J].Sensors and Actuators B: Chemical, 2018, 255(1):1039-1047 [70]Lee J C, Kim W, Choi S.Fabrication of a SERS-encoded microfluidic paper-based analytical chip for the point-of-assay of wastewater[J].International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(2):221-226 [71]Jayawardane B M, Wei S, McKelvie I D, et al.Microfluidic paper-based analytical device for the determination of nitrite and nitrate[J].Analytical chemistry, 2014, 86(15):7274-7279 [72]Jayawardane B M, McKelvie I D, Kolev S D.Development of a gas-diffusion microfluidic paper-based analytical device (μPAD) for the determination of ammonia in wastewater samples[J].Analytical chemistry, 2015, 87(9):4621-4626 [73]Jayawardane B M, McKelvie I D, Kolev S D.A paper-based device for measurement of reactive phosphate in water[J].Talanta, 2012, 100(1):454-460 [74]Wu J, Wang X, Lin Y, et al.Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip[J].Talanta, 2016, 154(1):73-79 [75]Peters J J, Almeida M I G S, ?raj L O C, et al.Development of a micro-distillation microfluidic paper-based analytical device as a screening tool for total ammonia monitoring in freshwaters[J].Analytica chimica acta, 2019, 1079(1):120-128 [76]Freitas C B, Moreira R C, de Oliveira Tavares M G, et al.Monitoring of nitrite,nitrate,chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection[J][J].Talanta, 2016, 147(1):335-341 [77]Nightingale A M, Hassan S, Warren B M, et al.A droplet microfluidic-based sensor for simultaneous in situ monitoring of nitrate and nitrite in natural waters[J].Environmental science & technology, 2019, 53(16):9677-9685 [78]Peng G, He Q, Lu Y, et al.Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr (III) and Cr (VI) in water samples after solid phase extraction[J].Analytica chimica acta, 2017, 955(1):58-66 [79]Quinn C W, Cate D M, Miller-Lionberg D D, et al.Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water[J].Environmental science & technology, 2018, 52(6):3567-3573 [80]Meredith N A, Volckens J, Henry C S.based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn (II) and Co (II)[J].Analytical Methods, 2017, 9(3):534-540 [81]Badu-Tawiah A K, Lathwal S, Kaastrup K, et al.Polymerization-based signal amplification for paper-based immunoassays[J].Lab on a Chip, 2015, 15(3):655-659 [82]Altintas Z, Akgun M, Kokturk G, et al.A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection[J].Biosensors and Bioelectronics, 2018, 100(1):541-548 [83]Khan M S, Misra S K, Dighe K, et al.Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells[J].Biosensors and Bioelectronics, 2018, 110(1):132-140 [84]Xu P, Zhang R, Yang N, et al.High-precision extraction and concentration detection of airborne disease microorganisms based on microfluidic chip[J].Biomicrofluidics, 2019, 13(2):024110-024110 [85] Owens C.Modular LEGO brick microfluidics[D]. Massachusetts Institute of Technology, 2017. [86]Vittayarukskul K, Lee A P.A truly Lego?-like modular microfluidics platform[J].Journal of Micromechanics and Microengineering, 2017, 27(3):035004-035004 [87]Nie J, Gao Q, Qiu J, et al.D printed Lego?-like modular microfluidic devices based on capillary driving[J].Biofabrication, 2018, 10(3):035001-035001 |
[1] | 王子淇 王仲戎 郝媛媛 姜伟丽 李继聪 王岩 周广林 周红军. 金属-有机骨架材料用于燃料油脱硫的研究进展[J]. 石油炼制与化工, 2023, 54(9): 24-32. |
[2] | 马苏甜 袁蕙 万伟 韩旭 刘颖荣. 炼油废催化剂中半挥发性有机物的测定及危废特性评估[J]. 石油炼制与化工, 2023, 54(2): 65-70. |
[3] | 王金华 傅晓萍. 泄漏工艺物料对循环水系统运行的影响及解决方案[J]. 石油炼制与化工, 2023, 54(11): 117-121. |
[4] | 李凌波. 简析中美石化行业泄漏检测与修复(LDAR)标准[J]. 石油炼制与化工, 2023, 54(10): 22-29. |
[5] | 冯云霞. 石化工业区VOCs排放特征及其对二次污染形成的贡献[J]. 石油炼制与化工, 2022, 53(6): 120-127. |
[6] | 韩旭 马苏甜 万伟 宋春侠 刘颖荣. 我国石化行业挥发性有机物源成分谱研究进展[J]. 石油炼制与化工, 2022, 53(4): 9-16. |
[7] | 吴潮汉 郭晓培 李阳. 炼化特殊污水强化预处理技术工业试验[J]. 石油炼制与化工, 2022, 53(3): 110-116. |
[8] | 裴旭东 史朋武. 高温熔融法固化催化裂化废催化剂重金属研究[J]. 石油炼制与化工, 2022, 53(12): 97-101. |
[9] | 裴旭东 张鹏辉. FCC废催化剂用于含胺污水臭氧催化氧化处理及其反应动力学研究[J]. 石油炼制与化工, 2022, 53(1): 112-117. |
[10] | 李予. 生物制剂清洗+微生物降解处理油田含油污泥技术研究[J]. 石油炼制与化工, 2021, 52(7): 101-106. |
[11] | 王栋. 石油化工企业原址土壤修复过程中废气治理案例研究[J]. 石油炼制与化工, 2021, 52(6): 112-116. |
[12] | 苏鹏 牛明明 熊云 谷科城 许天瑜 韩森. 特征真菌对喷气燃料性质的影响[J]. 石油炼制与化工, 2021, 52(3): 77-82. |
[13] | 万伟 苗杰 钱钦 马苏甜 刘颖荣. 吹扫捕集-气相色谱-质谱法测定石化土壤中挥发性有机物[J]. 石油炼制与化工, 2021, 52(2): 73-79. |
[14] | 李宁. 催化裂化烟气脱硫脱硝装置废水COD超标原因分析及应对措施[J]. 石油炼制与化工, 2021, 52(1): 126-130. |
[15] | 汪莹 王殿中 梁维军 李斌 戴泳 龙立华 曾厚旭 尹文胜. 分子筛绿色化合成技术的开发[J]. 石油炼制与化工, 2020, 51(2): 10-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||