石油炼制与化工 ›› 2021, Vol. 52 ›› Issue (11): 64-69.

• 分析与评定 • 上一篇    下一篇

基于便携式拉曼光谱的汽油快速识别模型

丁怡曼,薛晓康,范宾,董学胜,舒耀皋,蒋鑫   

  1. 上海化工研究院有限公司 上海化学品公共安全工程技术中心
  • 收稿日期:2021-03-04 修回日期:2021-06-23 出版日期:2021-11-12 发布日期:2021-10-29
  • 通讯作者: 范宾 E-mail:fb@ghs.cn
  • 基金资助:
    上海化学品公共安全工程技术研究中心

RAPID GASOLINE RECOGNITION MODEL BASED ON PORTABLE RAMAN SPECTROSCOPY

  • Received:2021-03-04 Revised:2021-06-23 Online:2021-11-12 Published:2021-10-29

摘要: 为实现汽油牌号和研究法辛烷值(RON)的快速现场检测,基于便携式拉曼光谱仪采集的113个汽油样品的光谱信号,采用主成分分析法和偏最小二乘法判别分析法(PLS-DA)分别建立了汽油牌号模型,采用偏最小二乘法建立了汽油RON快速预测模型。结果表明:在基线校正后的光谱数据基础上,经主成分分析并经求导处理后建模,样品分类正确率可达92.92%,而PLS-DA建模的正判率均在95%以上,对于92号、95号汽油的区分效果良好;基于偏最小二乘法的汽油RON快速预测模型的预测集相关系数为0.8927,预测均方根误差为0.6096,预测值与实际值具有较好的相关性。

关键词: 汽油, 拉曼光谱, 主成分分析, 偏最小二乘法, 研究法辛烷值

Abstract: In order to achieve the rapid field detection of gasoline brand and research octane number (RON), the spectral signals of 113 gasoline samples were collected by a portable Raman spectrometer. Then the gasoline brand model was respectively established by principal component analysis and partial least squares discriminant analysis, and the gasoline RON model was established by partial least squares method. The results show that the gasoline brand model based on the baseline-corrected spectral data treated by principal component analysis and derivation, the accuracy of sample classification can reach 92.92%, while the positive rate of the PLS-DA model is above 95%, which is better for distinguishing 92# and 95# gasoline. The gasoline RON rapid prediction model based on partial least squares, the prediction set correlation coefficient is 0.8927, and the root mean square error of prediction is 0.6096, which shows that the predicted value has a good correlation with the actual value.

Key words: gasoline, Raman spectrum, principal component analysis, partial least squares method, research octane number