[1]Parra-Cabrera C, Achille C, Kuhn S, et al.D printing in chemical engineering and catalytic technology: structured catalysts,mixers and reactors[J].Chemical Society Reviews, 2018, 47(1):209-230[2]王延庆, 沈竞兴, 吴海全.打印材料应用和研究现状[J].航空材料学报, 2016, 36(04):89-98[3]Lefevere J, Protasova L, Mullens S, et al.3D-printing of hierarchical porous ZSM-5: The importance of the binder system [J]. Materials & Design, 2017, 134, 331-341.[4]Li X, Li W, Rezaei F, et al.Catalytic cracking of n-hexane for producing light olefins on 3D-printed monoliths of MFI and FAU zeolites [J]. Chemical Engineering Journal, 2018, 333, 545-553.[5]Thakkar H, Eastman S, Hajari A, et al.D-printed zeolite monoliths for CO2 removal from enclosed environments[J].ACS Applied Materials & Interfaces, 2016, 8(41):27753-27761[6]Li X, Alwakwak A-A, Rezaei F, et al.Synthesis of Cr,Cu,Ni,and Y-doped 3D-printed ZSM-5 monoliths and their catalytic performance for n-hexane cracking[J].ACS Applied Energy Materials, 2018, 1(6):2740-2748[7]Lefevere J, Mullens S, Meynen V.The impact of formulation and 3D-printing on the catalytic properties of ZSM-5 zeolite [J]. Chemical Engineering Journal, 2018, 349, 260-268.[8]Magzoub F, Li X, Lawson S, et al.3D-printed HZSM-5 and 3D-HZM5@SAPO-34 structured monoliths with controlled acidity and porosity for conversion of methanol to dimethyl either [J]. Fuel, 2020, 280, 118628.[9]Lawson S, Adebayo B, Robinson C, et al.The effects of cell density and intrinsic porosity on structural properties and adsorption kinetics in 3D-printed zeolite monoliths [J]. Chemical Engineering Science, 2020, 218, 115564.[10]Lee K-Y, Lee H-K, Ihm S-K.Influence of catalyst binders on the acidity and catalytic performance of HZSM-5 zeolites for methanol-to-propylene (MTP) process: Single and binary binder system[J].Topics in Catalysis, 2010, 53(3):247-253[11]Bendou S, Amrani M J J O M, Characterization M, et al.Effect of hydrochloric acid on the structural of sodic-bentonite clay [J]. 2014, 2(5): 404-413.[12]Magzoub F, Li X, Al-Darwish J, et al.3D-printed ZSM-5 monoliths with metal dopants for methanol conversion in the presence and absence of carbon dioxide [J]. Applied Catalysis B: Environmental, 2019, 245, 486-495.[13]Veses A, Puértolas B, Callén M S, et al.Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties [J]. Microporous and Mesoporous Materials, 2015, 209, 189-196.[14]Abdelsayed V, Shekhawat D, Smith M W.Effect of Fe and Zn promoters on Mo/HZSM-5 catalyst for methane dehydroaromatization [J]. Fuel, 2015, 139, 401-410.[15]Wang S, Bai P, Sun M, et al.Fabricating mechanically robust binder‐free structured zeolites by 3D printing coupled with zeolite soldering: A superior configuration for CO2 capture[J].Advanced Science, 2019, 6(17):1901317-[16]赵洪岭, 王琛, 高俊冬, 等.打印制剂的药用辅料研究进展[J].临床医药文献电子杂志, 2019, 6(03):192-193[17]Jiang P, Yan C, Guo Y, et al.Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels[J].Biomaterials Science, 2019, 7(5):1805-1814[18]Couck S, Lefevere J, Mullens S, et al.CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith [J]. Chemical Engineering Journal, 2017, 308, 719-726.[19]Couck S, Cousin-Saint-Remi J, Van Der Perre S, et al.3D-printed SAPO-34 monoliths for gas separation [J]. Microporous and Mesoporous Materials, 2018, 255, 185-191.[20]Thakkar H, Lawson S, Rownaghi A A, et al.Development of 3D-printed polymer-zeolite composite monoliths for gas separation [J]. Chemical Engineering Journal, 2018, 348, 109-116.[21]Regufe M J, Ferreira A F P, Loureiro J M, et al.Electrical conductive 3D-printed monolith adsorbent for CO2 capture [J]. Microporous and Mesoporous Materials, 2019, 278, 403-413.[22]Thakkar H, Eastman S, Al-Mamoori A, et al.Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance[J].ACS Applied Materials & Interfaces, 2017, 9(8):7489-7498[23]Thakkar H, Eastman S, Al-Naddaf Q, et al.D-printed metal–organic framework monoliths for gas adsorption processes[J].ACS Applied Materials & Interfaces, 2017, 9(41):35908-35916[24]Tubío C R, Azuaje J, Escalante L, et al.3D printing of a heterogeneous copper-based catalyst [J]. Journal of Catalysis, 2016, 334, 110-115.[25]Azuaje J, Tubío C R, Escalante L, et al.An efficient and recyclable 3D printed α-Al2O3 catalyst for the multicomponent assembly of bioactive heterocycles [J]. Applied Catalysis A: General, 2017, 530, 203-210.[26]Lyu Z, Lim G J H, Guo R, et al.D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries[J].Advanced Functional Materials, 2019, 29(1):1806658-[27]Michorczyk P, H?drzak E, W?grzyniak A.Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane[J].Journal of Materials Chemistry A, 2016, 4(48):18753-18756[28]Bettermann S, Schroeter B, Moritz H-U, et al.Continuous emulsion copolymerization processes at mild conditions in a 3D-printed tubular bended reactor [J]. Chemical Engineering Journal, 2018, 338, 311-322.[29]Lowe S E, Shi G, Zhang Y, et al.Scalable production of graphene oxide using a 3D-printed packed-bed electrochemical reactor with a boron-doped diamond electrode[J].ACS Applied Nano Materials, 2019, 2(2):867-878[30]Kitson P J, Rosnes M H, Sans V, et al.Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices[J].Lab on a Chip, 2012, 12(18):3267-3271[31]Stefanov B I, Lebrun D, Mattsson A, et al.Demonstrating online monitoring of air pollutant photodegradation in a 3D printed gas-phase photocatalysis reactor[J].Journal of Chemical Education, 2015, 92(4):678-682 |