石油炼制与化工 ›› 2021, Vol. 52 ›› Issue (9): 90-97.

• 控制与优化 • 上一篇    下一篇

基于PLS-MI组合的天牛须搜索BP神经网络模型对汽油辛烷值的预测性能

石翠翠,刘媛华   

  1. 上海理工大学管理学院
  • 收稿日期:2021-03-08 修回日期:2021-05-21 出版日期:2021-09-12 发布日期:2021-08-30
  • 通讯作者: 石翠翠 E-mail:1832178264@qq.com

BP NEURAL NETWORK MODELOPTIMIZED BYBEETLE ANTENNAE SEARCH ALGORITHM BASED ON PLS-MI FOR FORECASTING GASOLINE OCTANE NUMBER

  • Received:2021-03-08 Revised:2021-05-21 Online:2021-09-12 Published:2021-08-30

摘要: 针对数据集中特征变量存在高度非线性和冗余的特点,提出了一种基于偏最小二乘回归(PLS)和互信息(MI)组合降维法的改进天牛须搜索算法(RSBAS)优化BP神经网络模型(PLS-MI-RSBASBP),并用于S Zorb脱硫装置汽油辛烷值的预测。首先通过偏最小二乘法和互信息组合算法选取与汽油辛烷值强相关的特征变量,然后使用RSBASBP模型对汽油辛烷值进行预测,并与BP,GABP,BASBP网络模型预测结果比较。结果表明:PLS-MI-RSBASBP模型预测结果较其他模型预测结果的MAE,MSE,RMSE更小,预测准确度高;而且,PLS-MI-RSBASBP模型可以确定影响汽油辛烷值的特征变量,从而进行有效控制和优化。

关键词: 偏最小二乘法, 互信息, 天牛须搜索算法, BP神经网络, 汽油, 辛烷值

Abstract: Aiming at the highly nonlinear and redundant characteristics of the characteristic variables in the data set, using an improved long-horned beetle antennae search algorithm (RSBAS) based on combined dimensionality reduction method of partial least square regression (PLS) and mutual information (MI), an optimized BP neural network model (PLS-MI-RSBASBP) was proposed, and applied to predict the octane number of gasoline in S Zorb desulfurization unit.Firstly, the characteristic variables related strongly to gasoline octane number are selected by partial least squares method and mutual information combination algorithm, and then the RSBASBP model is used to predict the gasoline octane number, and compared with the prediction results by BP, GABP, and BASBP network models. The results show that the MAE, MSE, and RMSE of the prediction results by PLS-MI-RSBASBP model are smaller than those by other models,indicating the higher prediction accuracy of the model.Moreover, the PLS-MI-RSBASBP model can be used to determine the characteristic variables that affect the gasoline octane number, which can be effectively controlled and optimized.

Key words: partial least squares, mutual information, beetle antennae search algorithm, BP neural network, gasoline, octane number