[1]边钢月, 张福琴.碳中和背景下石油石化行业发展动向及建议[J].流程工业, 2021(01):12-15.
[2]刘宁, 史成香, 潘伦, 张香文, 邹吉军.生物质替代石油原料合成高密度燃料的研究进展[J/OL].燃料化学学报:1-11[2021-08-28].https://doi.org/10.19906/j.cnki.JFCT.2021076.
[3]张蓓蓓.我国生物质原料资源及能源潜力评估[D].中国农业大学, 2018.
[4]Gandarias I, Arias P L.Hydrotreating catalytic processes for oxygen removal in the upgrading of bio-oils and bio-chemicals[J]. Liquid, Gaseous and Solid Biofuels: Conversion Techniques, 2013: 327-356.
[5]Oasmaa A, Kuoppala E.Fast pyrolysis of forestry residue3. Storage stability of liquid fuel[J].Energy & Fuels, 2003, 17(4):1075-1084
[6]Chen D, Zhou J, Zhang Q, et al.Evaluation methods and research progresses in bio-oil storage stability[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 69-79.
[7]Oasmaa A, Peacocke C.A guide to physical property characterisation of biomass-derived fast pyrolysis liquids[M]. Espoo: Technical Research Centre of Finland, 2001.
[8]吴乐, 王竞, 王玉琪, 郑岚.生物质油与蜡油在装置共炼的多目标优化[J].化工学报, 2020, 71(05):2182-2189
[9]Han Xue, Wang Haoxiang, Zeng Yimin, Liu Jing.Advancing the application of bio-oils by co-processing with petroleum intermediates: A review[J]. Energy Conversion and Management: X, 2020(prepublish):
[10]Arpit H.Bhatt, Yimin Zhang, Garvin Heath. Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards[J]. Applied Energy, 2020, 268:
[11]Lehto J, Oasmaa A, Solantausta Y, et al.Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass[J]. Applied Energy, 2014, 116: 178-190.
[12]Lindfors C, Paasikallio V, Kuoppala E, et al.Co-processing of dry bio-oil,catalytic pyrolysis oil,and hydrotreated bio-oil in a micro activity test unit[J].Energy & Fuels, 2015, 29(6):3707-3714
[13]Pinheiro Pires A P, Arauzo J, Fonts I, et al.Challenges and opportunities for bio-oil refining: A review[J].Energy & Fuels, 2019, 33(6):4683-4720
[14]Wang Huamin, Meyer Pimphan A., Santosa Daniel M., Zhu Cheng, Olarte Mariefel V., Jones Susanne B., Zacher Alan H.. Performance and techno-economic evaluations of co-processing residual heavy fraction in bio-oil hydrotreating[J]. Catalysis Today, 2021, 365:
[15]Wang C, Venderbosch R, Fang Y.Co-processing of crude and hydrotreated pyrolysis liquids and VGO in a pilot scale FCC riser setup[J]. Fuel Processing Technology, 2018, 181: 157-165.
[16]Eschenbacher A, Myrstad T, Bech N, et al.Co-processing of wood and wheat straw derived pyrolysis oils with FCC feed—Product distribution and effect of deoxygenation[J]. Fuel, 2020, 260: 116312.
[17]Le-Phuc N, Ngo P T, Ha Q L M, et al.Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMoSBA-15 catalyst for co-processing in fluid catalytic cracking process[J].Journal of Environmental Chemical Engineering, 2020, 8(2):103552-
[18]Yá?ez é, Meerman H, Ramírez A, et al.Assessing bio-oil co-processing routes as CO2 mitigation strategies in oil refineries[J].Biofuels, Bioproducts and Biorefining, 2021, 15(1):305-333
[19]Zheng-Hua Li, Kimberly Magrini-Bair, Huamin Wang, Oleg V.Maltsev, Thomas J. Geeza, Claudia I. Mora, James E. Lee. Tracking renewable carbon in bio-oil/crude co-processing with VGO through 13 C/ 12 C ratio analysis[J]. Fuel, 2020, 275:
[20]Biotechnology - Biofuel; Research Conducted at Los Alamos National Laboratory Has Provided New Information about Biofuel (Cold-weld Sealing In Argon Atmosphere for High Precision Carbon Isotope Analysis of Co-processed Biofuels Using a Continuous-flow Isotope Ratio ...)[J]. Energy & Ecology, 2020:
[21]Mukarakate C, Orton K, Kim Y, et al.Isotopic studies for tracking biogenic carbon during co-processing of biomass and vacuum gas oil[J].ACS Sustainable Chemistry & Engineering, 2020, 8(7):2652-2664
[22]Doll Charles G., Plymale Andrew E., Cooper Alan, Kutnyakov Igor, Swita Marie, Lemmon Teresa, Olarte Mariefel V., Wang Huamin. Determination of low-level biogenic gasoline, jet fuel, and diesel in blends using the direct liquid scintillation counting method for 14C content[J]. Fuel, 2021, 291:
[23]李世伟.热集成节能技术在芳烃联合装置上的应用[J].石油化工技术与经济, 2012, 28(03):47-49
[24]茹卫国.镇海炼化芳烃联合装置综合节能技术的探讨[J].石油化工技术与经济, 2016, 32(04):23-26
[25]张俊芝.齐鲁石化芳烃装置节能技术改造[J].石油石化节能与减排, 2011, 1(10):27-30
[26]Saudi Arabian Oil Co.Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities: US9803511[P]. 2017-10-31.
[27]朱杰人, 曹先常, 陈志良, 朱群志.低品位热能有机朗肯循环发电技术进展[J].低温与超导, 2021, 49(01):73-80
[28]Bombarda P, Invernizzi C M, Pietra C.Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles[J].Applied thermal engineering, 2010, 30(2-3):212-219
[29]Colonna Piero, Casati Emiliano, Trapp Carsten, Mathijssen Tiemo, Larjola Jaakko, Turunen Saaresti Teemu, Uusitalo Antti.Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(10):
[30]Tony Ho, Samuel S.Mao, Ralph Greif. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42(1):
[31]Jingye YANG, Binbin YU, Bingqing LU, Jiangping CHEN.Thermo-economic Review of Micro-scale Organic Rankine Cycle Integrated into Vehicle Engines for Waste Heat Recovery[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2019, 35(4):
[32]M.E. Mondejar, J.G. Andreasen, L. Pierobon, U. Larsen, M. Thern, F. Haglind. A review of the use of organic Rankine cycle power systems for maritime applications[J]. Renewable and Sustainable Energy Reviews, 2018, 91:
[33]秦文戈.热水发电技术在芳烃联合装置中的应用[J].当代化工, 2015, 44(02):307-309
[34]池胜刚.石化行业首套发电机组工业运行评价[J].炼油技术与工程, 2017, 47(02):60-64
[35]王珅皓.低温热水发电技术在芳烃项目上的应用[J].石油石化绿色低碳, 2016, 1(04):27-30
[36]Tabbi Wilberforce, Ahmad Baroutaji, Bassel Soudan, Abdul Hai Al-Alami, Abdul Ghani Olabi.Outlook of carbon capture technology and challenges[J]. Science of the Total Environment, 2019, 657:
[37]Paulina Wienchol, Andrzej Szl?k, Mario Ditaranto.Waste-to-energy technology integrated with carbon capture – Challenges and opportunities[J]. Energy, 2020, 198:
[38]Wilberforce Tabbi, Olabi A.G., Sayed Enas Taha, Elsaid Khaled, Abdelkareem Mohammad Ali. Progress in carbon capture technologies[J]. Science of the Total Environment, 2021, 761:
[39]Michael L.Szulczewski, Christopher W. MacMinn, Howard J. Herzog, Ruben Juanes. Lifetime of carbon capture and storage as a climate-change mitigation technology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14):
[40]Brett P.Spigarelli, S. Komar Kawatra. Opportunities and challenges in carbon dioxide capture[J]. Journal of CO2 Utilization, 2013, 1:
[41]Richard T.J. Porter, Michael Fairweather, Clea Kolster, Niall Mac Dowell, Nilay Shah, Robert M. Woolley. Cost and performance of some carbon capture technology options for producing different quality CO 2 product streams[J]. International Journal of Greenhouse Gas Control, 2016, 57:
[42]孟宪玲.炼厂二氧化碳排放估算与分析[J].当代石油石化, 2010, 18(02):13-16
[43]郑楚光, 赵永椿, 郭欣.中国富氧燃烧技术研发进展[J].中国电机工程学报, 2014, 34(23):3856-3864
[44]Molina A, Shaddix C R.Ignition and devolatilization of pulverized bituminous coal particles during oxygencarbon dioxide coal combustion[J].Proceedings of the combustion institute, 2007, 31(2):1905-1912
[45]Str?mberg L, Lindgren G, Jacoby J, et al.First test results from Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe[C]//34th International Technical Conference on Clean Coal & Fuel Systems, Florida, USA. 2009.
[46]Fujimori T, Yamada T.Realization of oxyfuel combustion for near zero emission power generation[J].Proceedings of the Combustion Institute, 2013, 34(2):2111-2130
[47]侯言超.催化裂化装置的富氧再生技术[J].炼油设计, 1997(05):10-12.
[48]Guo J, Liu Z, Huang X, et al.Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler[J]. Fuel, 2017, 187: 315-327. |