[1] Bello S S, Wang C, Zhang M, et al. A review on the reaction mechanism of hydrodesulfurization and hydrodenitrogenation in heavy oil upgrading[J]. Energy & Fuels, 2021, 35(14): 10998-11016.[2] Bouchoul N, Touati H, Fourré E, et al. Plasma-catalysis coupling for CH4 and CO2 conversion over mesoporous macroporous Al2O3: influence of the physico-chemical properties[J]. Applied Catalysis B: Environmental, 2021, 295(4): 120262-120271[3] Chen X, Wang N, Xia S. Research progress and development trend of heavy oil emulsifying viscosity reducer: a review[J]. Petroleum Science and Technology, 2021, 39(15-16): 550-563.[4] Sawarkar A N. Cavitation induced upgrading of heavy oil and bottom-of-the-barrel: A review[J]. Ultrason Sonochem, 2019, 58(7): 104690-104728.[5] Semeykina V S, Polukhin A V, Lysikov A I, et al. Texture evolution of hard-templated hierarchically porous alumina catalyst in heavy oil hydroprocessing[J]. Catalysis Letters, 2019, 149(2): 513-521.[6] 丁巍, 王鼎聪, 赵德智, 等. 大孔Mo-Ni/Al2O3催化剂的催化裂化柴油加氢性能研究 [J]. 无机化学学报, 2014, 30(06): 1345-1351.[7] 丁巍, 张文秀, 王鼎聪, 等. 大孔主客体催化材料的制备及表征 [J]. 石油化工高等学校学报, 2014, 27(03): 16-20.[8] 杨辰思, 丁巍, 王鼎聪, 等. 表面活性剂改性Mo-Ni-NH3/γ-Al2O3催化剂的分散性及孔结构的表征 [J]. 分析测试学报, 2016, 35(04): 388-393.[9] 张强, 丁巍, 王鼎聪, 等. 分步预硫化Mo-Ni/γ-Al2O3催化剂的制备、表征及加氢催化性能 [J]. 石油学报(石油加工), 2017, 33(01): 32-41.[10] Yenumala S R, Kumar P, Maity S K, et al. Hydrodeoxygenation of karanja oil using ordered mesoporous nickel-alumina composite catalysts[J]. Catalysis Today, 2020, 348(8): 45-54.[11] Abdelbaki Y, De Arriba A, Solsona B, et al. The nickel-support interaction as determining factor of the selectivity to ethylene in the oxidative dehydrogenation of ethane over nickel oxide/alumina catalysts[J]. Applied Catalysis A: General, 2021, 623(6): 118242-118254.[12] Wang J, Song Z, Han M, et al. Molybdenum-based catalysts supported on alumina for direct dehydrogenation of isobutane[J]. Molecular Catalysis, 2021, 511(7): 111746-111757.[13] Bau J A, Kozlov S M, Azofra L M, et al. Role of oxidized Mo species on the active surface of Ni–Mo electrocatalysts for hydrogen evolution under alkaline conditions[J]. ACS Catalysis, 2020, 10(21): 12858-12866.[14] Zhenjiong H, Xiaoshen L, Ye T, et al. Influence of carbon content in Ni-doped Mo2C catalysts on CO hydrogenation to mixed alcohol[J]. Catalysts, 2021, 11(2): 230-243.[15] Liu Q, Bai Y, Chen H, et al. Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst[J]. Bioresour Technol, 2021, 323(12): 124634-124640.[16] Dmitrachkov A M, Kvon R I, Nartova A V. N–doping of alumina thin film support to improve the thermal stability of catalysts: preparation and investigation[J]. Applied Surface Science, 2021, 566(7): 150631-150638.[17] Klarner M, Bieger S, Drechsler M, et al. Chemoselective hydrogenation of olefins using a nanostructured nickel catalyst[J]. Zeitschrift für anorganische und allgemeine Chemie, 2021, 647(1): 1-6.[18] Kena W, Xiaonan W, Deng L, et al. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting[J]. Journal of Materials Science & Technology, 2022, 99(10):270-276. [19] Shuaiqi G, Mengjie H, Yanli N, et al. Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers for enhanced photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2022, 427(8):131317-131327.[20] Garbarino G, Phung T K, Pampararo G, et al. Modification of the properties of γ-alumina as a support for nickel and molybdate catalysts by addition of silica[J]. Catalysis Today, 2021, 378(2): 57-64.[21] Nadeina K A, Danilevich V V, Kazakov M O, et al. Silicon doping effect on the properties of the hydrotreating catalysts of FCC feedstock pretreatment[J]. Applied Catalysis B: Environmental, 2021, 280(8): 119415-119430.[22] Jing Z-Y, Zhang T-Q, Shang J-W, et al. Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 427-440.[23] Yang L, Peng C, Fang X, et al. Hierarchically macro-mesoporous Ni-Mo/Al2O3 catalysts for hydrodesulfurization of dibenzothiophene[J]. Catalysis Communications, 2019, 121(18): 68-72.[24] Bentaleb F, Marceau E. Influence of the textural properties of porous aluminas on the reducibility of Ni/Al2O3 catalysts[J]. Microporous and Mesoporous Materials, 2012, 156(2): 40-44.[25] Zhang D, Zhao J, Zhang Y, et al. Catalytic hydrogenation of phenanthrene over NiMo/Al2O3 catalysts as hydrogen storage intermediate[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11675-11681.[26] Chen Y, Yu J, Jia J, et al. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting[J]. Applied Catalysis B: Environmental, 2020, 272(4): 118956-118964.[27] Fang Z, Shi D, Lin N, et al. Probing the synergistic effect of Mo on Ni-based catalyst in the hydrogenation of dicyclopentadiene[J]. Applied Catalysis A: General, 2019, 574(19): 60-70.[28] Kordouli E, Kordulis C, Lycourghiotis A, et al. HDO activity of carbon-supported Rh, Ni and Mo-Ni catalysts[J]. Molecular Catalysis, 2017, 441(8): 209-220. |