[1]徐承恩. 催化重整工艺与工程[M]. 北京:中国石化出版社, 2006.192-193.[2]梁超, 张泉灵. 催化重整装置反应器的建模与仿真[J]. 化工学报, 2012, 63(11): 3591-3596.[3]丁福臣, 周志军, 李兴, 等. 催化裂化五集总动力学模型参数估计方法[J]. 炼油设计, 2001, 31(4): 52-55.[4]徐斌, 陈旭, 陶莉莉, 等. 基于适应策略差分进化算法的化工反应动力学参数估值[J]. 化工进展, 2018, 37(06): 2077-2083.[5]王建伟, 彭亦功. 引入迁移和变异策略的改进鸟群算法及其在参数估计中的应用[J]. 华东理工大学学报 (自然科学版), 2018, 44(4): 617-624.[6]Wang L, Han X, Cao Y, et al. Computational singular perturbation analysis of stochastic chemical systems with stiffness[J]. Journal of Computational Physics, 2017, 335: 404-425.[7]Dotto G L, Salau N P G, Piccin J S, et al. Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems[M]. Adsorption processes for water treatment and purification. Springer, Cham, 2017: 53-76.[8]孙云. 逆流连续重整反应器模型研究[D]. 华东理工大学,2021.[9]Goeke A, Walcher S, Zerz E. Classical quasi-steady state reduction—a mathematical characterization[J]. Physica D: Nonlinear Phenomena, 2017, 345: 11-26.[10]Reshniak V, Khaliq A, Voss D. Slow-scale split-step tau-leap method for stiff stochastic chemical systems[J]. Journal of Computational and Applied Mathematics, 2019, 361: 79-96.[11]Kang H W, KhudaBukhsh W R, Koeppl H, et al. Quasi-steady-state approximations derived from the stochastic model of enzyme kinetics[J]. Bulletin of mathematical biology, 2019, 81(5): 1303-1336.[12]Turanyi T, Tomlin A S, Pilling M J. On the error of the quasi-steady-state approximation[J]. The Journal of Physical Chemistry, 1993, 97(1): 163-172. |