[1] ABDOLAHNEJAD A, MOKHTARI M, EBRAHIMI A A, et al. Improved degradation of n-hexane vapours using a hybrid system, a photoreactor packed with TiO2 coated-scoria granules and a multilayer biofilter [J]. Journal of Environmental Health Science and Engineering, 2019, 17(1): 1-11.[2] 宋月芹, 陈雪琴, 何牧, 等. 不同金属改性的ZSM-5分子筛正己烷裂解性能 [J]. 石油炼制与化工, 2021, 52(10): 176-182.[3] BELAISSAOUI B, MOULLEC Y L, FAVRE E. Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach [J]. Energy, 2016, 95(jan.15): 291-302.[4] C X Z A B, C B G, C A E C, et al. Adsorption of VOCs onto engineered carbon materials: A review [J]. Journal of Hazardous Materials, 2017, 338(15): 102-123.[5] CHANG Z, WANG C, ZHANG G. Progress in degradation of volatile organic compounds based on low-temperature plasma technology [J]. Plasma Processes and Polymers, 2020, 17(4):1-24.[6] Tobaldi D M, Dvoranová D, Lajaunie L, et al. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment[J]. Chemical Engineering Journal, 2021, 405(1): 1-14.[7] Vikrant K, Kim K H, Szulejko J E, et al. Bio-filters for the Treatment of VOCs and Odors-A Review[J]. Asian Journal of Atmospheric Environment, 2017, 11(3): 139-152. [8] Kim J, Lee B K. Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber[J]. Process Safety and Environmental Protection, 2018, 119(5): 164-171.[9] ALBERTO HUERTA-AGUILAR C, PALOS-BARBA V, THANGARASU P, et al. Visible light driven photo-degradation of Congo red by TiO2-ZnO/Ag: DFT approach on synergetic effect on band gap energy [J]. Chemosphere, 2018, 213(DEC.): 481-97.[10] Feizpour F, Jafarpour M, Rezaeifard A. Band gap modification of TiO2 nanoparticles by ascorbic acid-stabilized Pd nanoparticles for photocatalytic Suzuki–Miyaura and Ullmann coupling reactions[J]. Catalysis Letters, 2019, 149(6): 1595-1610.[11] Shayegan Z, Lee C S, Haghighat F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review[J]. Chemical Engineering Journal, 2018, 334(15): 2408-2439.[12] Sun Z, Pichugin V F, Evdokimov K E, et al. Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film[J]. Applied Surface Science, 2020, 500(15):1-21.[13] Li Y, Li W, Liu F, et al. Construction of CeO2/TiO2 heterojunctions immobilized on activated carbon fiber and its synergetic effect between adsorption and photodegradation for toluene removal[J]. Journal of Nanoparticle Research, 2020, 22(5): 1-21. [14] LI M, LU B, KE Q F, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO 2 /activated carbon fiber felt porous composites for toluene removal [J]. Journal of Hazardous Materials, 2017, 333(JUL.5): 88-98.[15] A X G, B J D, C X M, et al. Application of titanium dioxide in arsenic removal from water: A review - ScienceDirect [J]. Journal of Hazardous Materials, 2012, s 215–216(10): 1-16.[16] BEHNAM M A, EMAMI F, SOBHANI Z, et al. The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model [J]. Iranian Journal of Basic Medical Sciences, 2018, 21(11): 1133-9.[17] Gupta S M, Tripathi M. A review of TiO2 nanoparticles[J]. chinese science bulletin, 2011, 56(16): 1639-1657.[18] Jang Y, Kim S, Lee S, et al. Graphene oxide wrapped SiO2/TiO2 hollow nanoparticles loaded with photosensitizer for photothermal and photodynamic combination therapy[J]. Chemistry–A European Journal, 2017, 23(15): 3719-3727.[19] Pessoa R S, Fraga M A, Santos L V, et al. Nanostructured thin films based on TiO2 and/or SiC for use in photoelectrochemical cells: A review of the material characteristics, synthesis and recent applications[J]. Materials Science in Semiconductor Processing, 2015, 29(1): 56-68.[20] Bi Y, Sun E, Zhang S, et al. Synergistic effect of adsorption and photocatalysis for the degradation of toluene by TiO2 loaded on ACF modified by Zn (CH3COO) 2[J]. Environmental Science and Pollution Research, 2021, 28(40): 57398-57411.[21] LI Y, LIU F, LI M, et al. Study on adsorption coupling photodegradation on hierarchical nanostructured g-C3N4/TiO2/activated carbon fiber composites for toluene removal [J]. Journal of Sol-Gel Science and Technology, 2020, 93(2): 1-17.[22] 刘谋圳,从宪玲,蒲锡鹏,等.g-C_3N_4/Ag/AgCl/TiO_2复合材料的制备及其光催化性能研究[J].化工新型材料,2016,44(07):93-95+98.[23] 刘威,张淑婷,卢秋莹,等.可见光响应TiO2改性g-C3N4异质结光催化材料的制备与性能[J].微纳电子技术,2021,58(12):1064-1070.[24] 柴波,闫俊涛,范国枝,宋光森,等.新颖CdMoO_4/g-C_3N_4复合材料的制备及其可见光增强的电荷分离和光催化活性(英文)[J].Chinese Journal of Catalysis, 2020, 41(01):190-199.[25] Liu R F, Li W B, Peng A Y. A facile preparation of TiO2/ACF with CTi bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal[J]. Applied Surface Science, 2018, 427(pta): 608-616. [26] 宋沐遥, 孙德武, 关壬铨, 等. 高比表面积TiO_2与g-C_3N_4复合材料的光催化性能及机理研究 [J]. Chinese Journal of Chemical Physics, 2021, 34(02): 210-6.[27] [1]胡亚微,高慧,王晓芳.g-C_3N_4/TiO_2纳米管阵列的制备及光催化性能的研究[J].表面技术,2018,47(12):113-118. |