石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (1): 180-188.

• 特约研究报告 • 上一篇    下一篇

基于人工神经网络的工质基础物性预测

林美金1,董轩1,洪小东1,2,廖祖维1,孙婧元1,杨遥1,王靖岱1,阳永荣1   

  1. 1. 浙江大学化学工程与生物工程学院
    2. 浙江大学杭州国际科创中心

  • 收稿日期:2023-09-18 修回日期:2023-10-25 出版日期:2024-01-12 发布日期:2024-01-15
  • 通讯作者: 洪小东 E-mail:hongxiaodong@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目;浙江省尖兵领雁计划项目

PREDICTION OF PHYSICAL PROPERTIES OF WORKING FLUID BASED ON ARTIFICIAL NEURAL NETWORK

  • Received:2023-09-18 Revised:2023-10-25 Online:2024-01-12 Published:2024-01-15
  • Contact: Xiaodong Hong E-mail:hongxiaodong@zju.edu.cn

摘要: 烃类及卤代烃是制冷及余热发电等热力学循环系统潜在的理想工质,但其数量繁多且多数物性参数未知,建立准确的物性预测模型对新型工质的开发至关重要。从多个公开数据库中收集了2 500多种烃类及卤代烃分子(含C,H,F,Cl)的基础物性参数,包括正常沸点(Tb)、临界温度(Tc)、临界压力(pc)、偏心因子(ω),构建了一个工质物性数据库;进一步,通过改进基团贡献-人工神经网络(GC-ANN)的方法,模型的输入参数除基团外,还加入相对分子质量、Tb、约化维纳指数,建立了预测烃类及卤代烃分子 Tb,Tc,pcω的神经网络模型,所开发模型的预测误差小于传统的GC-ANN的误差。

关键词: 新型工质, 物性预测, 基团贡献法, BP神经网络

Abstract: Traditional working fluids in thermodynamic cycles, such as refrigeration and waste heat power generation, have been associated with issues such as ozone layer depletion and global warming. The development of efficient and environmentally friendly novel working fluids has become a research focus. Hydrocarbons and halogenated hydrocarbons are ideal candidates, but their large number and many unknown thermophysical properties make it crucial to establish accurate models for predicting these properties in order to screen new working fluids effectively. In this study, the basic thermophysical parameters of more than 2 500 hydrocarbons and halogenated hydrocarbons containing C, H, F, and Cl atoms were collected from various public databases, including normal boiling point(Tb) , critical temperature(Tc) , critical pressure (pc) and acentric factor (ω), and furtherly, by improving the method of group contribution-artificial neural network (GC-ANN), a neural network model for predicting Tb,Tc,pc,and ω of hydrocarbons and halogenated hydrocarbons containing C, H, F, and Cl atoms was established by adding relative molecular mass, Tb and approximate wiener index to the input parameters of the model. The prediction errors of the models developed in this study were smaller than those of the traditional GC-ANN.

Key words: new working fluid, property prediction, group contribution method, BP neural network