[1] HE M, WANG C, CHEN J, et al. Prediction of the critical properties of mixtures based on group contribution theory [J]. Journal of Molecular Liquids, 2018, 271.[2] MONDEJAR M E, CIGNITTI S, ABILDSKOV J, et al. Prediction of properties of new halogenated olefins using two group contribution approaches [J]. Fluid Phase Equilibria, 2017, 433: 79-96.[3] 任嘉辉, 刘豫, 刘朝, et al. 基于分子指纹和拓扑指数的工质临界温度理论预测 [J]. 化工学报, 2022, 73(04): 1493-1500.[4] 王小艳, 司继林, 张达, et al. 纯物质临界参数估算方法的研究进展 [J]. 化工进展, 2012, 31(09): 1871-1877.[5] 周传光,杨福胜,胡仰栋,于为人. 由化合物的沸点及比重推算临界参数 [J]. 计算机与应用化学, 1994, (02): 123-126.[6] VEJAHATI F, NIKOO M B, MOKHATAB S, et al. Simple Correlation Estimates Critical Properties of Alkanes [J]. Petroleum Science and Technology, 2007, 25(9).[7] JOBACK K G, REID R C. ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS [J]. Chemical Engineering Communications, 1987, 57(1-6).[8] AMBROSE D. Correlation and Estimation of Vapor-liquid Critical Properties: I. Critical Temperatures of Organic Compounds [J]. Div Chem, 1978.[9] CONSTANTINOU L, GANI R. New group contribution method for estimating properties of pure compounds [J]. AIChE Journal, 1994, 40(10).[10] JORGE M-M, ELADIO P-F. Estimation of Pure Compound Properties Using Group-Interaction Contributions [J]. AIChE Journal, 1999, 45(3).[11] 梁英华, 马沛生. A New Group-Contribution Method for Critical Properties [J]. Chinese Journal of Chemical Engineering, 2000, (01): 78-83.[12] LYMPERIADIS A, ADJIMAN C S, JACKSON G, et al. A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments [J]. Fluid Phase Equilibria, 2008, 274(1-2): 85-104.[13] LAZZúS J. ρ– T– P prediction for ionic liquids using neural networks [J]. Journal of The Taiwan Institute of Chemical Engineers - J TAIWAN INST CHEM ENG, 2009, 40: 213-232.[14] GHARAGHEIZI F, ESLAMIMANESH A, MOHAMMADI A H. Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm [J]. Journal of Chemical and Engineering Data: the ACS Journal for Data, 2011, 56(5).[15] LUKAWSKI M Z, DIPIPPO R, TESTER J W. Molecular property methods for assessing efficiency of organic Rankine cycles [J]. Energy, 2018, 142.[16] WANG Q, MA P, JIA Q, et al. Position Group Contribution Method for the Prediction of Critical Temperatures of Organic Compounds [J]. Journal of Chemical and Engineering Data - J CHEM ENG DATA, 2008, 53.[17] FRIEND D, HUBER M. Thermophysical Property Standard Reference Data from NIST [J]. International Journal of Thermophysics, 1994, 15: 1279-1288.[18] WILDING W V, ROWLEY R L, OSCARSON J L. DIPPR? Project 801 evaluated process design data [J]. Fluid Phase Equilibria, 1998, 150-151: 413-420.[19] JOBACK K G, REID R C. ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS [J]. Chemical Engineering Communications, 1987, 57(1-6): 233-243.[20] MARRERO J, GANI R. Group-contribution based estimation of pure component properties [J]. Fluid Phase Equilibria, 2001, 183.[21] SUKUMAR D, ASHA C. Unified artificial neural network-group contribution method for predictions of normal boiling point and critical temperature of refrigerants and related compounds [J]. International Journal of Refrigeration, 2022, 140.[22] SOBATI M A, ABOOALI D. Molecular based models for estimation of critical properties of pure refrigerants: Quantitative structure property relationship (QSPR) approach [J]. Thermochimica Acta, 2015, 602.[23] LAI N A. Prediction of the critical properties: A simple accurate strategy applied to environmentally friendly substances HFOs [J]. Fluid Phase Equilibria, 2020, 506(C).[24] MONDEJAR M E, CIGNITTI S, ABILDSKOV J, et al. Prediction of properties of new halogenated olefins using two group contribution approaches [J]. Fluid Phase Equilibria, 2017, 433.[25] MAURO B, LUIGI M. Comparison between Multi-Linear- and Radial-Basis-Function-Neural-Network-Based QSPR Models for The Prediction of The Critical Temperature, Critical Pressure and Acentric Factor of Organic Compounds [J]. Molecules (Basel, Switzerland), 2018, 23(6). |