[1] International Energy Agency. CO2 emissions by energy source[EB/OL]. https://www.iea.org/countries/china.
[2] International Energy Agency. Total CO2 emissions[EB/OL]. https://www.iea.org/countries/china.
[3] International Energy Agency. Oil products final consumption by sector, People's Republic of China 1990-2020[EB/OL]. https://www.iea.org/countries/china.
[4] 《中国统计年鉴2023》[S]. 2023.
[5] 中华人民共和国生态环境部. 中国移动源环境管理年报[R].
[6] 汪燮卿. 中国炼油技术(第4版)[M]. 中国石化出版社, 2021.
[7] Center J P E. Gasoline WG report[EB/OL]. [1.8]. https://www.pecj.or.jp/japanese/jcap/jcap2/pdf/4th/2_1.pdf.
[8] Zhu R, Hu J, Bao X, et al. Effects of aromatics, olefins and distillation temperatures (T50 & T90) on particle mass and number emissions from gasoline direct injection (GDI) vehicles[J]. Energy Policy, 2017,101:185-193.
[9] Karavalakis G, Short D, Vu D, et al. Evaluating the Effects of Aromatics Content in Gasoline on Gaseous and Particulate Matter Emissions from SI-PFI and SIDI Vehicles[J]. Environmental Science & Technology, 2015,49(11):7021-7031.
[10] Wei J, Yin Z, Qian Y, et al. Comparative Effects of Olefin Content on the Performance and Emissions of a Modern GDI Engine[J]. Energy & Fuels, 2019,33(11):10499-10507.
[11] Mohammed M K, Balla H H, Al-Dulaimi Z M H, et al. Effect of ethanol-gasoline blends on SI engine performance and emissions[J]. Case Studies in Thermal Engineering, 2021,25:100891.
[12] Do?an B, Erol D, Yaman H, et al. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis[J]. Applied Thermal Engineering, 2017,120:433-443.
[13] Wang M Q. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels[J]. office of scientific & technical information technical reports, 1996.
[14] Poggio T, Vetter T. Recognition and Structure from One 2D Model View: Observations on Prototypes, Object Classes and Symmetries[J]. laboratory massachusetts institute of technology, 1992.
[15] Li D, Wu C, Tsai T, et al. Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge[J]. Computers & Operations Research, 2007,34(4):966-982.
[16] Zhu B, Chen Z, Yu L. A novel mega-trend-diffusion for small sample[J]. CIESC Journal, 2016,67(3):820-826.
[17] 高克铉, 李志刚, 徐长明, 等. 混合整体趋势扩散的虚拟样本构建及其血液光谱分析应用[J]. 仪器仪表学报, 2019,40(08):167-175.
[18] Chen Z, Zhu B, He Y, et al. A PSO based virtual sample generation method for small sample sets: Applications to regression datasets[J]. Engineering Applications of Artificial Intelligence, 2017,59:236-243.
[19] 周志华. 机器学习[M]. 清华大学出版社, 2016.
[20] 李航. 统计学习方法[M]. 清华大学出版社, 2012.
[21] Li D C, Wen I H. A genetic algorithm-based virtual sample generation technique to improve small data set learning[J]. Neurocomputing, 2014,143(nov.2):222-230. |