[1]Gielen D, Boshell F, Saygin D.Climate and energy challenges for materials science[J].Nature Materials, 2016, 15(2):117-120[2]Marocco P, Morosanu E A, Giglio E, et al.CO2 methanation over Ni/Al hydrotalcite-derived catalyst: experimental characterization and kinetic study[J]. Fuel, 2018, 225:230-242.[3]Miguel C V, Mendes A, Madeira L M.Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst[J]. Journal of CO2 Utilization, 2018, 25:128-136.[4]Kim H Y, Lee H M, Park J.Bifunctional mechanism of CO2 methanation on Pd-MgOSiO2 catalyst: independent roles of MgO and Pd on CO2 methanation[J].The Journal of Physical Chemistry C, 2010, 114(15):7128-7131[5]Wang F, He S, Chen H, et al.Active site dependent reaction mechanism over RuCeO2 catalyst toward CO2 methanation[J].Journal of the American Chemical Society, 2016, 138(19):6298-6305[6]Karelovic A, Ruiz P.Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J]. Journal of Catalysis, 2013, 301:141-153.[7]Cárdenas-Arenas A, Quindimil A, Davó-Qui?onero A, et al.Isotopic and in situ drifts study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2020, 265:118538.[8]Cho E H, Park Y, Park K Y, et al.Simultaneous impregnation of Ni and an additive via one-step melt-infiltration: effect of alkaline-earth metal (ca, Mg, Sr, and Ba) addition on Ni/γ-Al2O3 for CO2 methanation[J]. Chemical Engineering Journal, 2022, 428:131393.[9]Liang C, Zhang L, Zheng Y, et al.Methanation of CO2 over nickel catalysts: impacts of acidic/basic sites on formation of the reaction intermediates[J]. Fuel, 2020, 262:116521.[10]Li W, Nie X, Jiang X, et al.ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation[J]. Applied Catalysis B: Environmental, 2018, 220:397-408.[11]Solis-Garcia A, Louvier-Hernandez J F, Almendarez-Camarillo A, et al.Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni[J]. Applied Catalysis B: Environmental, 2017, 218:611-620.[12]Jia X, Zhang X, Rui N, et al.Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Applied Catalysis B: Environmental, 2019, 244:159-169.[13]Clark S J, Segall M D, Pickard C J, et al.First principles methods using castep[J].Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5-6):567-570[14]Segall M D, Lindan P J, Probert M A, et al.First-principles simulation: ideas,illustrations and the castep code[J].Journal of Physics: Condensed Matter, 2002, 14(11):2717-[15]Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77(18):3865-[16]Bl?chl P E.Projector augmented-wave method[J].Physical Review B, 1994, 50(24):17953-[17]Ma L, Ye R, Huang Y, et al.Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy[J]. Chemical Engineering Journal, 2022, 446:137031.[18]Yamasaki M, Habazaki H, Yoshida T, et al.Compositional dependence of the CO2 methanation activity of NiZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors[J].Applied Catalysis a: General, 1997, 163(1-2):187-197[19]Yamasaki M, Habazaki H, Asami K, et al.Effect of tetragonal ZrO2 on the catalytic activity of NiZrO2 catalyst prepared from amorphous Ni-Zr alloys[J].Catalysis Communications, 2006, 7(1):24-28[20]Hofmann, A., Clark, et al. Hydrogen adsorption on the tetragonal ZrO2 (101) surface: a theoretical study of an important catalytic reactant[J]. Physical Chemistry Chemical Physics, 2002(4):3500-3508.[21]Lalinde J A H, Roongruangsree P, Ilsemann J, et al.CO2 methanation and reverse water gas shift reaction. Kinetic study based on in situ spatially-resolved measurements[J]. Chemical Engineering Journal, 2020, 390:124629.[22]Kattel S, Liu P, Chen J G.Tuning selectivity of CO2 hydrogenation reactions at the metaloxide interface[J].Journal of the American Chemical Society, 2017, 139(29):9739-9754 |