[1]Gao P.Li S,Bu X.,et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J].Nature Chemistry, 2017, 9(10):1019-1024[2]Hodala Janardhan L.Moon Dong J,Reddy Kakarla Raghava,et al. Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis[J].International Journal of Hydrogen Energy, 2021, 46(4):3289-3301[3]Santos Ronaldo Gon?alves dos, Alencar Andre Cardoso.Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review[J].International Journal of Hydrogen Energy, 2020, 45(36):18114-18132[4]Lin T.Yu F,An Y.,et al. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity[J].Acc Chem Res, 2021, 54(8):1961-1971[5]Wolf Moritz, Fischer Nico, Claeys Michael.Water-induced deactivation of cobalt-based Fischer–Tropsch catalysts[J].Nature Catalysis, 2020, 3(12):962-965[6]Roferdepoorter C.K. Comprehensive mechanism for the Fischer-Tropsch synthesis[J].Chem. Rev., 1981, 81(1):5-5[7]Tsakoumis Nikolaos E.R?nning Magnus,Borg ?yvind,et alDeactivation of cobalt based Fischer–Tropsch catalysts: A review[J].Catalysis Today, 2010, 154(3-4):162-182[8]Zhao Shangqing, Li Haiwei, Wang Bo, et al.Recent advances on syngas conversion targeting light olefins[J].Fuel, 2022, 1(1):321-321[9]Lafuma A.Quere DSuperhydrophobic states[J].Nat Mater, 2003, 2(7):457-460[10]Tavasoli Ahmad, Malek Abbaslou Reza M.Dalai Ajay KDeactivation behavior of ruthenium promoted Coγ-Al2O3 catalysts in Fischer–Tropsch synthesis[J].Applied Catalysis A: General, 2008, 346(1-2):58-64[11]Xu Yanfei, Li Xiangyang, Gao Junhu, et al.A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J].Science, 2021, 371(1):610-613[12]Wei Fang Chengtao Wang, Zhiqiang Liu, Liang Wang, Lu Liu, Hangjie Li, Shaodan Xu, Anmin Zheng, Xuedi Qin, Lujie Liu, Feng-Shou Xiao.Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration[J].Science, 2022, 1(377):406-410[13]Yan Bin, Ma Long, Gao Xinhua, et al.Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer–Tropsch synthesis[J].Applied Catalysis A: General, 2019, 1(1):585-585[14]Shi Lihong, Li Debao, Hou Bo, et al.Organic Modification of SiO2 and Its Influence on the Properties of Co-Based Catalysts for Fischer–Tropsch Synthesis[J].Chinese Journal of Catalysis, 2007, 28(11):999-1002[15]Zhou W.Cheng K,Kang J.,et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J].Chemical Society Reviews, 2019, 48(12):3193-3228[16]刘义涛, 朱明辉, 杨子旭, 等.煤制化学品:合成气直接制低碳烯烃催化剂研究进展[J].化工进展, 2021, 40(2):594-604[17]王野, 康金灿, 张庆红.费托合成催化剂的研究进展[J].石油化工, 2009, 38(12):1255-1263[18]Niemantsverdriet J.On the time-dependent behavior of iron catalysts in Fischer-Tropsch synthesis[J].Journal of Catalysis, 1981, 72(1):385-388[19]Raupp G.B.,Delgass WN. M?ssbauer investigation of supported Fe catalysts: III. In situ kinetics and spectroscopy during Fischer[J].Journal of Catalysis, 1979, 58(3):361-369[20]ANDERSSON STEN, HYDE B.Twinning on the unit cell level as a structure-building operation in the solid state[J].Journal of Solid State Chemistry, 1974, 9(1):92-101[21]Hou Mengning, Ma Lingjuan, Ma Hongbin, et al.In situ characterization of Cu-Fe-Ox catalyst for water–gas shift reaction[J].Journal of Materials Science, 2017, 53(2):1065-1075[22] 吕帅.铁、钴基催化剂活性相的设计、调控及费托合成性能[D]. 武汉:武汉科技大学, 2019.[23]Cheng Q, Tian Y, Lyu S., et al..Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J].Nat Commun, 2018, 9(1):3250-3250[24]Zhong L.Yu F,An Y.,et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J].Nature, 2016, 538(7623):84-87[25]An Yunlei, Zhao Yonghui, Yu Fei, et al.Morphology control of Co2C nanostructures via the reduction process for direct production of lower olefins from syngas[J].Journal of Catalysis, 2018, 366(1):289-299[26]Xie Jingxiu.Designing the right protection[J].Science, 2021, 371(6529):577-577[27]N.Wenzel RobertResistance of solid surfaces to wetting by water[J].Industrial And Engineering Chemistry, 1936, 28(8):988-992[28]Nishino Takashi, Meguro Masashi, Nakamae Katsuhiko, et al.The lowest surface free energy based on-CF3 alignment[J].Langmuir, 1999, 15(1):4321-4323[29]Lum Ka, Chandler David, Weekst John D.Hydrophobicity at Small and Large Length Scales[J].J. Phys. Chem.B, 1999, 103(1):4570-4577[30]A Patankar Neelesh..Transition between Superhydrophobic States on Rough Surfaces[J].Langmuir, 2004, 20(1):7097-7102[31]Barthlott W.Neinhuis CPurity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta, 1997, 202(1):1-8[32]Ding Mingyue, Xu Yanfei.Improving catalysis by moving water[J].Science, 2022, 6604(1):369-370[33]Rytter Erling, Salman Ata ul Rauf, Tsakoumis Nikolaos E, et al..Hydrophobic catalyst support surfaces by silylation of γ-alumina for Co/Re Fischer-Tropsch synthesis[J].Catalysis Today, 2018, 299(1):20-27[34]Shi L.Chen J,Fang K.,et al. CH3-modified CoRuSiO2 catalysts and the performances for Fischer–Tropsch synthesis[J].Fuel, 2008, 87(4-5):521-526[35]Yu Xufei, Zhang Jianli, Wang Xu, et al.Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J].Applied Catalysis B: Environmental, 2018, 232(1):420-428[36]Lin Tiejun, Liu Peigong, Gong Kun, et al.Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission[J].Applied Catalysis B: Environmental, 2021, 299(1):120683-120683 |