[1] Wang L, Niu X, Chen J.SiO2 supported Ni-In intermetallic compounds: Efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols[J]. Applied Catalysis B: Environmental, 2020, 278: 119293-305.
[2]刘春洲.高级脂肪醇的生产和应用[J].现代化工, 1995, 15(3):13-6
[3] 王晓璐, 易晓华, 咸漠, et al.脂肪醇制备研究进展[J]. 氨基酸和生物资源, 2014, (3): 20-4.
[4] 陆新德, 黄洪周, 郭明.高级脂肪醇生产技术及市场分析[J]. 精细石油化工, 1998, (4): 47-52.
[5] Smirnov A, Wang W, Kikhtyanin O, et al.Hydroconversion of sunflower oil to fatty alcohols and hydrocarbons using CuZn and CuZn-HBEA-based catalysts[J]. Catalysis Today, 2023, 424: 113841-52.
[6]Thakur D S, Kundu A.Catalysts for Fatty Alcohol Production from Renewable Resources[J].Journal of the American Oil Chemists' Society, 2016, 93(12):1575-93
[7]Zhou Y, Remón J, Jiang Z, et al.Tuning the selectivity of natural oils and fatty acidsesters deoxygenation to biofuels and fatty alcohols: A review[J].Green Energy & Environment, 2023, 8(3):722-43
[8] Lu C, Akwafo E O, Wijffels R H, et al.Metabolic engineering of Pseudomonas putida KT2440 for medium-chain-length fatty alcohol and ester production from fatty acids[J]. Metab Eng, 2023, 75: 110-8.
[9]段琼芬, 马李一, 郑华.几种高级烷醇的研究概述[J].林产化工通讯, 2005, 39(2):42-7
[10]杜君臣, 张爱敏, 夏文正.动植物油脂加氢制备生物燃油催化剂研究进展[J].功能材料, 2014, 45(9):9008-12
[11]Manyar H G, Paun C, Pilus R, et al.Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts[J].Chemical Communications, 2010, 46(34):6279-81
[12]Ullrich J, Breit B.Selective Hydrogenation of Carboxylic Acids to Alcohols or Alkanes Employing a Heterogeneous Catalyst[J].ACS Catalysis, 2017, 8(2):785-789
[13] Rozmys?owicz B, Kirilin A, Aho A, et al.Selective hydrogenation of fatty acids to alcohols over highly dispersed ReOx/TiO2 catalyst[J]. Journal of Catalysis, 2015, 328: 197-207.
[14] Chen L, Li Y, Zhang X, et al.Mechanistic insights into the effects of support on the reaction pathway for aqueous-phase hydrogenation of carboxylic acid over the supported Ru catalysts[J]. Applied Catalysis A: General, 2014, 478: 117-28.
[15] Yao Y, Wu X, Gutiérrez O Y, et al.Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts[J]. Applied Catalysis B: Environmental, 2020, 267: 118698-710.
[16] He L, Cheng H, Liang G, et al.Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester[J]. Applied Catalysis A: General, 2013, 452: 88-93.
[17]Cao X, Long F, Zhang G, et al.Selective Hydrogenation of Methyl Palmitate to Cetyl Alcohol via Ternary Synergistic Catalysis of Ni,Oxygen Vacancies,and Lewis Acid Sites under Mild Reaction Conditions[J].ACS Sustainable Chemistry & Engineering, 2021, 9(29):9789-801
[18]Wang J, Nie R, Xu L, et al.Catalytic transfer hydrogenation of oleic acid to octadecanol over magnetic recoverable cobalt catalysts[J].Green Chemistry, 2019, 21(2):314-20
[19]Song S, Wang D, Di L, et al.Robust cobalt oxide catalysts for controllable hydrogenation of carboxylic acids to alcohols[J].Chinese Journal of Catalysis, 2018, 39(2):250-7
[20] Riguetto B A, Rodrigues C E C, Morales M A, et al.Ru-Sn catalysts for selective hydrogenation of crotonaldehyde: Effect of the Sn/(Ru+Sn) ratio[J]. Applied Catalysis A: General, 2007, 318: 70-8.
[21] Fonseca Benítez C A, Mazzieri V A, Sánchez M A, et al.Selective hydrogenation of oleic acid to fatty alcohols on Rh-Sn-B/Al2O3 catalysts. Influence of Sn content[J]. Applied Catalysis A: General, 2019, 584: 117149-55.
[22]Luo Z, Bing Q, Kong J, et al.Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols[J].Catalysis Science & Technology, 2018, 8(5):1322-32
[23] Zhu H, Wang F, Jiang J, et al.Ni-Fe-Al LDH derived Ni Fe nanosheet for green diesel production from lipid hydrotreatment[J]. Fuel Processing Technology, 2023, 239: 107537-46.
[24] Kong X, Fang Z, Bao X, et al.Efficient hydrogenation of stearic acid over carbon coated Ni Fe catalyst[J]. Journal of Catalysis, 2018, 367: 139-49.
[25]Han D, Yin W, Wang S, et al.Fabrication of a NiFe Alloy Oxide Catalyst via Surface Reconstruction for Selective Hydrodeoxygenation of Fatty Acid to Fatty Alcohol[J].ACS Sustainable Chemistry & Engineering, 2021, 9(44):15027-41
[26]Suknev A, Zaikovskii V, Kaichev V, et al.The nature of active sites in Pt–ReOXTiO2 catalysts for selective hydrogenation of carboxylic acids to alcohols[J].Journal of Energy Chemistry, 2015, 24(5):646-54
[27] Cao X, Zhao J, Long F, et al.Efficient low-temperature hydrogenation of fatty acids to fatty alcohols and alkanes on a Ni-Re bimetallic catalyst: The crucial role of NiRe alloys[J]. Applied Catalysis B: Environmental, 2022, 312: 121437-48.
[28] Yue S, Ding X, Liu X, et al.High-efficient production of fatty alcohol via hydrogenation of fatty acid over Cu-NbOx/SBA-15 catalyst[J]. Catalysis Today, 2022, 405-406: 221-6.
[29] Cao X, Long F, Zhai Q, et al.Heterogeneous Ni and MoOx co-loaded CeO2 catalyst for the hydrogenation of fatty acids to fatty alcohols under mild reaction conditions[J]. Fuel, 2021, 298: 120829-31.
[30]Onyestyák G, Harnos S, Kalló D.Improving the catalytic behavior of NiAl2O3 by indium in reduction of carboxylic acid to alcohol[J].Catalysis Communications, 2011, 16(1):184-8
[31]秦慧虎.载体催化剂的制作及特性探讨[J].贵州化工, 2005, 30(3):19-22
[32]Zhang Z, Jing M, Chen H, et al.Transfer Hydrogenation of Fatty Acids on CuZrO2: Demystifying the Role of Carrier Structure and Metal–Support Interface[J].ACS Catalysis, 2020, 10(16):9098-108
[33] Wang F, Yu S, Xu H, et al.Selective hydrogenation of oleic acid over Flower-like Ni-Fe/SiO2-ZrO2 catalyst to produce fatty alcohol: Effect of SiO2[J]. Fuel, 2023, 345: 128170-8.
[34]Wu L, Li L, Li B, et al.Selective conversion of coconut oil to fatty alcohols in methanol over a hydrothermally prepared CuSiO2 catalyst without extraneous hydrogen[J].Chem Commun (Camb), 2017, 53(45):6152-5
[35] Long F, Wu S, Chen Y, et al.Hydrogenation of fatty acids to fatty alcohols over Ni3Fe nanoparticles anchored on TiO2 crystal catalyst: Metal support interaction and mechanism investigation[J]. Chemical Engineering Journal, 2023, 464: 142773-85.
[36]Yao S, Zhang T, Tang X, et al.Octadecanol Production from Methyl Stearate by Catalytic Transfer Hydrogenation over Synergistic CoHAP Catalysts[J].Energy & Fuels, 2021, 35(12):9970-82
[37]Ali A, Li B, Lu Y, et al.Highly selective and low-temperature hydrothermal conversion of natural oils to fatty alcohols[J].Green Chemistry, 2019, 21(11):3059-64
[38] Martínez-Prieto L M, Puche M, Cerezo-Navarrete C, et al.Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols[J]. Journal of Catalysis, 2019, 377: 429-37.
[39] Chen J, Wang D, Luo F, et al.Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts[J]. Fuel, 2022, 314: 122780-9.
[40] Ni J, Leng W, Mao J, et al.Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols[J]. Applied Catalysis B: Environmental, 2019, 253: 170-8.
[41] Zhou Y, Liu X, Yu P, et al.Temperature-tuned selectivity to alkanes or alcohol from ethyl palmitate deoxygenation over zirconia-supported cobalt catalyst[J]. Fuel, 2020, 278: 118295-307. |