[1] 黄文轩. 润滑剂添加剂基本性质及应用指南[M]. 北京: 中国石化出版社,2021.
[2] Herman A B. Process for preparing esters and products[P]. US: 2100993, 1937-11-30.
[3] Rudnick L R. Lubricant additives chemistry and application, Third edition[M]. New York: Marcel Dekker Inc, 2017.
[4] 樱井俊男. 石油产品添加剂[M]. 石油产品添加剂翻译组, 译. 北京: 石油工业出版社,1980.
[5] 付丽丽,吕高志,周博,等. 润滑油降凝剂研究进展[J]. 精细石油化工,2016,33:77-81.
[6] Selby T W. The non-newtonian characteristics of lubricating oils[J]. A S L E Transactions, 1958, 1(1): 68-81.
[7] Mary C, Philippon D, Lafarge L, et al. New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure[J]. Tribology Letters, 2013, 52(3): 357-369.
[8] Martini A, Ramasamy U S, Len M. Review of viscosity modifier lubricant additives[J]. Tribology Letters, 2018, 66(58): 1-14.
[9] Holtzinger J, Green J, Lamb G, et al. New method of measuring permanent viscosity loss of polymer-containing lubricants[J]. Tribology Transactions, 2012, 55(5): 631-639.
[10] 姚亚平,澄宇. 粘度指数改进剂的增稠能力与剪切稳定性[J]. 润滑油,1999,14(1):32-39.
[11] Karen S P. Influence of wax inhibitors on wax appearance temperature, pour point, and viscosity of waxy crude oils[J]. Energy & Fuels, 2003, 17: 321-328.
[12] 宋昭峥,葛际江,赵密福,等. 聚丙烯酸酯结构与降凝的关系[J]. 石油学报(石油加工),2004,20(1):29-34.
[13] 丁兴者,戚国荣,杨士林. 聚丙烯酸酯降凝剂的溶液性质及其对含蜡油降凝效果的影响[J]. 石油炼制与化工,1999,30(5):50-54.
[14] Gavlin G, Swire E A, Jones S P. Pour point depression of lubricating oils[J]. Industrial and Engineering Chemistry, 1953, 45(10): 2327-2335.
[15] 张维邦,冯克,李卓美. 聚甲基丙烯酸酯类的合成及其对油品的降凝作用[J]. 高分子材料科学与工程,1987,4:16-21.
[16] 费建奇. PMAs的结构与性能及其制备工艺[J]. 润滑油,2011,26(6):24-35.
[17] 刘枫林. PMA降凝剂化学结构对降凝效果的影响[J]. 润滑油,2003,18(4):33-35.
[18] 张耀,段庆华,魏克成,等. 一种梯度共聚物、其制造方法及其应用[P]. 中国专利:1075407842,2018-01-05.
[19] 付雪. 聚丙烯酸酯类降凝剂的分子设计、合成和降凝机理研究[D]. 成都: 西南石油大学, 2019.
[20] 孙彬,任飞鹤,卢义麟,等. 聚甲基丙烯酸酯类柴油降凝剂的研究进展[J]. 精细石油化工,2021,38(5):75-79.
[21] 刘斌. 新型润滑油降凝剂的研发及降凝机理研究[D]. 大连: 辽宁师范大学, 2009.
[22] Xu Guangwen, Xue Yuan, Zhao Zhicheng, et al. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel[J]. Fuel, 2018, 216: 898-907.
[23] Xie Maiying, Chen Fengfei, Liu Jinbao, et al. Synthesis and evaluation of benzyl methacrylate-methacrylate copolymers as pour point depressant in diesel fuel[J]. Fuel, 2019, 255: 115880.
[24] Ren Feihe, Lu Yilin, Sun Bin, et al. Structure regulation and influence of comb copolymers as pour point depressants on low temperature fluidity of diesel fuel[J]. Energy, 2022, 254: 124438.
[25] Yin Suya, Yang Taishun, Xue Yuan, et al. Influence of tetradecyl methacrylate-N-α-methacrylamide copolymers as pour point depressants on the cold flow property of diesel fuel[J]. Energy & Fuels, 2020, 34(10): 11976-11986.
[26] Xue Yuan, Yang Taishun, Lin Hualin, et al. Effect of methacrylate-methacrylamide copolymers with various polar pendants on the cold flow properties of diesel fuels[J]. Fuel, 2022, 315: 123112.
[27] Yang Taishun, Wu Junjie, Yuan Mingxia, et al. Influence of polar groups on the depressive effects of polymethacrylate polymers as cold flow improvers for diesel fuel[J]. Fuel, 2021, 290: 120035.
[28] Yang Taishun, Yin Suya, Xie Maiying, et al. Effects of N-containing pour point depressants on the cold flow properties of diesel fuel[J]. Fuel, 2020, 272: 117666.
[29] 王国金,叶元凯,马少华,等. 粘度指数改进剂结构与性能之间的关系[J]. 石油商技,1996,3:9-15.
[30] 李光文,华渠成,黄作鑫,等. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展,2023,42(3):1562-1571.
[31] Jukic A, Vidovic E, Janovic Z. Alkyl methacrylate and styrene terpolymers as lubricating oil viscosity index improvers[J]. Chemistry and Technology of Fuels and Oils, 2007, 43(5): 386-394.
[32] Saha D K, Ghosh P. Synthesis, characterization and performance evaluation of long chain methacrylate-octene copolymer for lubricant formulation[J]. Journal of Macromolecular Science Part A, 2019, 56(11): 1050-1059.
[33] Savoji M T, Zhao Dan, Muisener R J, et al. Poly(alkyl methacrylate)-grafted polyolefins as viscosity modifiers for engine oil: a new mechanism for improved performance[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1840-1850.
[34] Klaus S, Katrin S, Mohammad S, et al. Graft copolymers based on polyolefin backbone and methacrylate side chains[P]. US: 20190233757, 2019-08-01
[35] Semenycheva L L, Geras’kina E V, Matkivskaya Y O, et al. Structure of the copolymers of alkyl methacrylate and vinyl alkyl ethers, novel viscosity modifiers of lubricating oils[J]. Russian Journal of Applied Chemistry, 2016, 88(10): 1686-1691.
[36] Willard E C. Lubricating oil compositions containing polymeric additives[P]. US: 2737496, 1956-03-06.
[37] Abraham M, Terence J, Isaac R. Multifunctional tetrapolymer lube oil additive[P]. US: 4021357, 1977-05-03.
[38] Clemens A, Vetter J, Uwe B, et al. Additive for biodiesel and biofuel oils[P]. US: 6409778, 2002-06-25.
[39] Bolshakova E A, Kazantsev O A, Arifullin I R, et al. Polymers of higher alkyl (meth)acrylates: the effects of structure on dispersion properties in petroleum oil I-20A[J]. Petroleum Chemistry, 2021, 61(11): 1288-1295.
[40] 郭意厚. ATF三功能粘度指数改进剂的研制及性能评定[J]. 润滑油,1996,11(5):24-31.
[41] Bapat A P, Erck R, Seymour B T, et al. Lipophilic polymethacrylate ionic liquids as lubricant additives[J]. European Polymer Journal, 2018, 108: 38-47.
[42] Campbell K B, Erck R, Swita M, et al. Multifunctional tunable polymethacrylates for enhanced shear stability and wear prevention[J]. ACS Applied Polymer Materials, 2020, 2(7): 2839-2848.
[43] Fan J, Müller M, St?hr T, et al. Reduction of friction by functionalised viscosity index improvers[J]. Tribology Letters, 2007, 28(3): 287-298.
[44] Müller M, Miklozic K T, Dardin A, et al. The design of boundary film-forming PMA viscosity modifiers[J]. Tribology Transactions, 2006, 49(2): 225-232.
[45] Zhu Xinyuan, Zhou Yongfeng, Yan Deyue. Influence of branching architecture on polymer properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(18): 1277-1286.
[46] Parkatzidis K, Wang H S, Truong N P, et al. Recent developments and future challenges in controlled radical polymerization: a 2020?update[J]. Chem, 2020, 6(7): 1575-1588.
[47] Ren J M, McKenzie T G, Fu Qiang, et al. Star polymers[J]. Chemical Reviews, 2016, 116(12): 6743-6836.
[48] Cosimbescu ., Robinson J W, Page J P. Polymer architecture: does it influence shear stability?[J]. Industrial & Engineering Chemistry Research, 2018, 57(35): 11858-11867.
[49] Cosimbescu L, Malhotra D, Campbell K B, et al. Molecular design and shear stability correlations of dendritic polymethacrylates[J]. Molecular Systems Design & Engineering, 2019, 4(6): 1114-1124.
[50] Ravensteijn B G P, Zerdan R B, Seo D, et al. Triple function lubricant additives based on organic-inorganic hybrid star polymers: friction reduction, wear protection, and viscosity modification[J]. ACS Applied Polymer Materials, 2019, 11(1): 1363-1375.
[51] 魏观为,肖奇,张东恒,等. 活性自由基引发星形PMA黏度指数改进剂合成及其剪切稳定性研究[J]. 润滑油,2011,26:16-21.
[52] Sparnacci K, Frison T, Podda E, et al. Core-crosslinked star copolymers as viscosity index improvers for lubricants[J]. ACS Applied Polymer Materials, 2022, 4(12): 8722-8730.
[53] Covitch M J. How polymer architecture affects permanent viscosity loss of multigrade lubricants[J]. SAE Transactions, 1998, 107(4): 1881-1894.
[54] Clemens A, Horst P. Lubricant additive[P]. EP: 0744457, 1996-11-27.
[55] Jürgen O, Horst P. Comb polymers[P]. EP: 0621293, 1994-10-26.
[56] St?hr T, Eisenberg B, Müller M. A new generation of high performance viscosity modifiers based on comb polymers[J]. SAE International Journal of Fuels and Lubricants, 2009, 1(1): 1511-1516.
[57] Ma Yang, Yang Hongmei, Chen Zhihao, et al. Highly branched polymethacrylates prepared efficiently: brancher-directed topology and application performance[J]. Polymer Chemistry, 2021, 12(45): 6606-6615. |