›› 2018, Vol. 49 ›› Issue (12): 76-80.

• 分析与评定 • 上一篇    下一篇

柴油馏分碳数分布的预测研究

任小甜,褚小立,田松柏   

  1. 中国石化石油化工科学研究院
  • 收稿日期:2018-04-03 修回日期:2018-05-03 出版日期:2018-12-12 发布日期:2019-01-03
  • 通讯作者: 任小甜 E-mail:renxiaotian.ripp@sinopec.com
  • 基金资助:
    国家重点研发计划资助

STUDY ON PREDICTION OF CARBON NUMBER DISTRIBUTION OF DIESEL DISTILLATE

Ren Xiaotian,Chu Xiaoli,Tian Songbai   

  • Received:2018-04-03 Revised:2018-05-03 Online:2018-12-12 Published:2019-01-03
  • Contact: Ren Xiaotian E-mail:renxiaotian.ripp@sinopec.com

摘要: 收集一定数量的柴油馏分样品,利用标准方法分别测定其基本物性、烃类组成信息和详细的碳数分布信息,建立起对应的数据库。对于一个待测柴油样本,首先根据其物性数据和烃类组成信息在库中找出与之距离最近的6个样本,然后利用这几个样本的信息,结合过采样技术在待测样本周围生成大量的虚拟样本,最后根据KNR算法进行回归计算,选择与待测样本最相似的4个虚拟样本,将这些样本的碳数分布组成信息进行线性加权加和,以此作为待测样本的预测值。将该方法应用于直馏柴油碳数分布的预测模型,柴油的硫含量、氮含量、酸值以及11个烃类(分别为链烷烃、单环烷烃、双环烷烃、三环烷烃、烷基苯、茚满/四氢萘、茚类、萘类、苊类、苊烯类和三环芳烃)的组成信息作为模型的输入特征,计算结果表明,这种模型能同时计算出直馏柴油中312项碳数集总的含量,计算速度快,准确度高,模型维护简单,具有一定的应用价值。

关键词: 柴油馏分, 烃类组成, 碳数分布, 预测, 最近邻回归, 过采样

Abstract: For the purpose of obtaining the detailed carbon number distribution of diesel distillate from its bulk properties and hydrocarbon group compositions,a new method was proposed based on the k-nearest neighbor regression algorithm (KNR) and over-sampling. With the standard methods,bulk properties,group compositions and carbon number distribution of the representative samples were obtained to build the data bank. As to a new sample to be measured,the nearest 6 samples were confirmed according to the bulk properties and group compositions, a massive virtual samples were obtained around this new sample using over-sampling technique on the 6 samples. With the KNR,the carbon number distribution of the new sample can be determined by linear weighted summing of the 4 virtual neighbors. A prediction model was established for the straight-run diesel,the contents of 312 carbon number lumps can be calculated simultaneously from the content of sulfur,nitrogen,acid number and the compositions of 11 type hydrocarbons(paraffin,monocycloalkane,bicycloalkane,tricycloalkane,alkylbenzene,indan/tetrahydronaphthalene,indene,naphthalene,acenaphthene,acenaphthlene and tricyclic aromatic hydrocarbon). The model was accurate,fast and easy to maintain,which made it more useful and valuable in practical implement.

Key words: diesel distilate, hydrocarbon group composition, carbon number distribution, prediction, k-nearest neighbor regression algorithm, over-sampling