[1] Al‐Khattaf S, Ali M. A, ?ejka J. Recent development in transformations of aromatic hydrocarbons over zeolites[J]. Zeolites and Catalysis: Synthesis, Reactions and Applications, 2010, 2, 623-648.
[2] Krej?í A, Al-Khattaf S, Ali M. A, Bejblová M., ?ejka J. Transalkylation of toluene with trimethylbenzenes over large-pore zeolites[J]. Applied Catalysis A: General, 2010, 377, 99-106.
[3] Ali S. A, Ali M. A, Al-Nawad K, Ercan C, Wang Y. Parametric study of dealkylation–transalkylation reactions over mordenite-based bi-functional catalysts[J]. Applied Catalysis A: General, 2011, 393 (2011) 96-108.
[4] Al-Khattaf S. S, Ali S. A, Osman M. S, Aitani A. M. Influence of toluene-tetramethylbenzene transalkylation on heavy aromatics conversion to xylenes[J]. Journal of Industrial and Engineering Chemistry, 2015, 21, 1077-1088.
[5] Almulla F. M, Zholobenko V. I, Hill P. I, Chansai S, Garforth A. A. Transalkylation of Toluene with 1, 2, 4-Trimethylbenzene over Large Pore Zeolites[J]. Industrial & Engineering Chemistry Research, 2017, 56, 9799-9808.
[6] Kong D, Qi X, Zhu Z, Yang W, Xie Z. Technological advances in conversion of heavy aromatics to light aromatics[J]. Chemical Industry and Engineering Progress, 2006, 25, 983-987.
[7] Mokoena K, Scurrell M. S. Alkyl transfer reactions on solid acids. The disproportionation of ethylbenzene and toluene on H-mordenite and HY zeolites[J]. Petroleum Science and Technology, 2018, 36, 1208-1215.
[8] Odedairo T, Balasamy R. J, Al-Khattaf S. Toluene Disproportionation and Methylation over Zeolites TNU-9, SSZ-33, ZSM-5, and Mordenite Using Different Reactor Systems[J]. Industrial & Engineering Chemistry Research, 2011, 50, 3169-3183.
[9] 郑均林, 徐旋, 祁晓岚, 孔德金. 劣质重芳烃资源及其化工产品转化技术[J]. 化工进展, 2017, 36, 3665-3673.
[10] 戴厚良. 芳烃技术[M]. 北京: 中国石化出版社, 2017.
[11] 徐爱莲. 重整C10+重芳烃的综合利用[J]. 石化技术, 2004, 4, 14.
[12] Shi D, Zhao Z, Xu C, Duan A, Liu J, Dou T. Characterization and catalytic performances of supported chromia catalysts for C10+ heavy aromatics hydrodealkylation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 245, 106-113.
[13] Tsai T C, Liu S B, Wang I. Metal supported zeolite for heavy aromatics transalkylation process[J]. Catalysis surveys from Asia, 2009, 13(2): 94-103.
[14] Chen, Q, Chen X, Mao L, Cheng, W. Recent advances in R and D of commercial catalysts for acrylonitrile synthesis, styrene production and toluene disproportionation processes[J]. Catalysis today, 1999, 51, 141-146.
[15] Dooley K. M, Brignac S. D, Price G. L. Kinetics of zeolite-catalyzed toluene disproportionation[J]. Industrial & engineering chemistry research, 1990, 29, 789-795.
[16] 邓澄浩, 祁晓岚, 郑均林, 孔德金, 唐颐. 贵金属/分子筛催化芳烃转化的研究进展[J]. 化工进展, 2017, 36, 1711-1718.
[17] Thakur R, Barman S, Gupta, R. K. Kinetic Investigation in Transalkylation of 1, 2, 4 Trimethylbenzene with Toluene over Rare Earth Metal-Modified Large Pore Zeolite[J]. Chemical Engineering Communications, 2017, 204, 254-264.
[18] Al-Khattaf S. S, Ali S. A, Aitani A. M, Al-Nawad K. J, Chiu C. H, Tsai T. C. Catalysis of metal supported zeolites for dealkylation–transalkylation of alkyl-aromatics[J]. Applied Catalysis A: General, 2016, 514, 154-163.
[19] Bernal S., Calvino J. J, Cauqui M. A, Gatica J. M, Cartes C. L, Omil J. P, Pintado, J. M. Some contributions of electron microscopy to the characterisation of the strong metal–support interaction effect[J]. Catalysis Today, 2003, 77, 385-406.
[20] Liu D, Quek X. Y, Cheo W. N. E, Lau R, Borgna A, Yang Y. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction[J]. Journal of Catalysis, 2009, 266, 380-390.
[21] Liu, X, Liu M. H, Luo Y. C, Mou C. Y, Lin S. D, Cheng H, Lin, T. S. Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation[J]. Journal of the American Chemical Society, 2012, 134(24), 10251-10258.
[22] Michel C, Zaffran J, Ruppert A. M, Matras-Michalska J, J?drzejczyk M, Grams J, Sautet P. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone[J]. Chemical Communications, 2014, 50, 12450-12453.
[23] Wolffenbuttel B. M. A, Nijhuis T. A, Stankiewicz A, Moulijn J. A. Influence of water on fast hydrogenation reactions with monolithic and slurry catalysts[J]. Catalysis Today, 2001, 69, 265-273.
[24] Wang W. J, Qiao M. H, Li H. X, Dai W. L, Deng, J. F. Study on the deactivation of amorphous NiB/SiO2 catalyst during the selective hydrogenation of cyclopentadiene to cyclopentene[J]. Applied Catalysis A: General, 1998, 168, 151-157.
[25] Wu Z, Zhang M, Li W, Mu S, Tao K. Study on the deactivation of supported amorphous Ni-B catalyst in hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2007, 273, 277-283.
|