[1] Kumar, V, Sinha, V.. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J].Chemosphere, 2021, 283(131184.):-
[2] Brancher, M.Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna’s first COVID-19 lockdown: Significance for air quality management[J].Environ. Pollut., 2021, 284:117153-
[3] Health Effects Institute.State of Global Air 2020. Special Report[R]. Boston, MA:Health Effects Institute, 2020.
[4]刘毅,俞颖,宋锴,等.德州市冬季大气挥发性有机物污染特征及其对臭氧和二次有机气溶胶生成的贡献[J].南京信息工程大学学报自然科学版, 2020, 12(6):665-675
[5] Chen, C.H., Chuang, Y.C., Hsieh, C.C., et al. VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan[J]. Atmos. Pollut. Res., 2019, 10(4), 1060–1074.
[6] Zhang, Y.C., Li, R., Fu, H.B., et al. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China[J]. J. Environ. Sci., 2018, 71, 233–248.
[7] Zheng, H., Kong, S.F., Yan, Y.Y., et al. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River[J]. Sci. Total Environ., 2020, 703, 135505.
[8]张博韬,景宽,王琴,等.年夏季某石化工业区浓度特征及活性物种[J].环境科学研究, 2021, 34(6):1318-1327
[9]曹梦瑶,林煜棋,章炎麟.南京工业区秋季大气挥发性有机物污染特征及来源解析[J].环境科学, 2020, 41(6):2565-2576
[10] Song, S.K., Shon, Z.H., Kang, Y.H., et al. Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul[J]. Environ. Pollut., 2019, 247, 763–774.
[11] Yang, Y., Ji, D.S., Sun, J.et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment[J]. Sci. Total Environ., 2019, 695, 133889.
[12] Liu, Y.F., Song, M.D., Liu, X.G. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China[J]. Environ. Pollut., 2020, 257, 113599.
[13] Hu, R., Liu, G., Zhang, H., et al. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei[J]. Ecotoxicol. Environ. Saf., 2018, 160, 301–307.
[14] Carter, W.P.L. Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales[M]. California Air Resources Board, Research Division, 2007.
[15]Derwent R.G.,Jenkin ME.,Utembe S.R.,et al. Secondary organic aerosol formation from a large number of reactive man-made organic compounds[J].Science of the Total Environment, 2010, 408(16):3374-3381
[16] Hui, L.H., Liu, X.G., Tan, Q.W., et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China[J]. Atmos. Environ., 2018, 192, 55–71.
[17]闫磊,黄银芝,高松,等.杭州湾北岸种挥发性有机物污染特征及来源解析[J].环境科学研究, 2020, 33(3):536-546
[18]胡天鹏,李刚,毛瑶,等.某石油化工园区秋季污染特征及来源解析[J].环境科学, 2018, 39(2):517-524
[19]王鸣,陈文泰,陆思华,等.我国典型城市环境大气挥发性有机物特征比值[J].环境科学, 2018, 39(10):4393-4399
[20] Zhang, D., He, B., Yuan, M.H., et al. Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season[J]. J. Environ. Sci., 2021, 108, 44–57.
[21] Feng, Y.X., Xiao, A.S., Jia, R.Z., et al. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery[J]. Environ. Pollut. 2020, 265, 115026.
[22] Mo, Z.W., Cui, R., Yuan, B., et al. A mass-balance-based emission inventory of non-methane volatile organic compounds (NMVOCs) for solvent use in China[J]. Atomos. Chem. Phys., 2021, 21, 13655–13666. |