石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (2): 64-74.
申强1,2,杨峥豪2,张香港2,段孝旭2,马良2,江霞2,3,常玉龙1,2,3
收稿日期:
2023-10-16
修回日期:
2023-11-13
出版日期:
2024-02-12
发布日期:
2024-01-29
通讯作者:
常玉龙
E-mail:changyulong1218@163.com
基金资助:
Received:
2023-10-16
Revised:
2023-11-13
Online:
2024-02-12
Published:
2024-01-29
Supported by:
摘要: CO2捕集是实现碳中和的托底性技术。化学吸收法是最具商业化潜力的技术之一,而吸收过程中气液传质强化是影响CO2捕集效率、能耗和成本的重要因素。针对新的气液传质强化模式,从微流体强化、引入额外能量场、引入第二相介质和微界面振荡技术全面总结和回顾了近年来的强化CO2吸收手段和研究现状,重点关注微界面振荡技术的原理和研究方法,考察了不同强化手段的优劣势,为推动碳捕集过程中气液传质强化发展提供参考。
申强 杨峥豪 张香港 段孝旭 马良 江霞 常玉龙. CO2捕集过程中气液传质强化研究进展[J]. 石油炼制与化工, 2024, 55(2): 64-74.
[1]Shan Y, Huang Q, Guan D, et al.China CO2 emission accounts 2016–2017[J].Scientific Data, 2020, 7(1):54-54[2] Du J, Cao H, Li Y, et al.Development of hybrid surrogate model structures for design and optimization of CO2 capture processes: Part I. Vacuum pressure swing adsorption in a confined space[J]. Chemical Engineering Science, 2023, 283: 119379.[3] Jiang L, Liu W, Wang R Q, et al.Sorption direct air capture with CO2 utilization[J]. Progress in Energy and Combustion Science, 2023, 95: 101069.[4] Klemm A, Vicchio S P, Bhattacharjee S, et al.Impact of Hydrogen Bonds on CO2 Binding in Eutectic Solvents: An Experimental and Computational Study toward Sorbent Design for CO2 Capture[J]. ACS Sustainable Chemistry & Engineering, 2023.[5] Li Q, Wu H, Wang Z, et al.Analysis and optimal design of membrane processes for flue gas CO2 capture[J]. Separation and Purification Technology, 2022, 298: 121584.[6] Luchang S, Zhengrong W, Wu C-F, et al.Research on operation optimization of a 10 000 t/a carbon capture project for coal-fired power plants[C], 2021.[7] García-Abuín A, Gómez-Díaz D, Losada M, et al.Bubble column gas–liquid interfacial area in a polymer+surfactant+water system[J]. Chemical Engineering Science, 2012, 75: 334-341.[8]张志炳, 田洪舟, 张锋, 等.多相反应体系的微界面强化简述[J].化工学报, 2018, 69(1):6-[9] Abolhasani M, Günther A, Kumacheva E, et al.Microfluidic studies of carbon dioxide[J]. Angewandte Chemie, 2014, 53 31: 7992-8002.[10] Yin Y, Zhu C, Fu T, et al.Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel[J]. Chemical Engineering Science, 2019, 201: 264-273.[11] Zhang Q, Dong Z, Zhao S, et al.Ultrasound-assisted gas–liquid mass transfer process in microreactors: The influence of surfactant, channel size and ultrasound frequency[J]. Chemical Engineering Journal, 2021, 405: 126720.[12]金付强, 张晓东, 许海朋, 等.物理场强化气液传质的研究进展[J].化工进展, 2014, 33(4):9-[13] Zhang H, Wang B, Xiong M, et al.Process intensification in gas-liquid mass transfer by nanofluids: Mechanism and current status[J]. Journal of Molecular Liquids, 2022, 346: 118268.[14] Huang M, Zhu C, Fu T, et al.Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121435.[15] Li X, Zhang L, Yang Z, et al.Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213.[16]Ma L, Wu Z, He M, et al.Experimental study on Fenton oxidation regeneration of adsorbed toluene saturated activated carbon[J].Environmental Technology, 2022, 43(4):524-533[17]Whitman W G, et al.The two film theory of gas absorption[J].International Journal of Heat and Mass Transfer, 1962, 5(5):429-433[18] Kashid M N, Renken A, Kiwi-Minsker L, et al.Gas–liquid and liquid–liquid mass transfer in microstructured reactors[J]. Chemical Engineering Science, 2011, 66: 3876-3897.[19] 贾绍义, 柴诚敬, 等.化工传质与分离过程[M]. 化工传质与分离过程, 2007.[20] Wong F, Jantunen L M, Pu?ko M, et al.Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic[J]. Environmental science & technology, 2011, 45 3: 876-81.[21] Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al.A review on microreactors: Reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 2018, 189: 431-448.[22] Yao X, Zhang Y, Du L, et al.Review of the applications of microreactors[J]. Renewable & Sustainable Energy Reviews, 2015, 47: 519-539.[23] Kim H, Nagaki A, Yoshida J-i, et al.A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds[J]. Nature communications, 2011, 2: 264.[24] Tanimu A, Jaenicke S, Alhooshani K, et al.Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications[J]. Chemical Engineering Journal, 2017, 327: 792-821.[25] Madhawan A, Arora A, Das J G K-J, et al.Microreactor technology for biodiesel production: a review[J]. Biomass Conversion and Biorefinery, 2017, 8: 485-496.[26] Liu D, Wang S, et al.Flow pattern and pressure drop of upward two-phase flow in vertical capillaries[J]. Industrial & Engineering Chemistry Research, 2008, 47: 243-255.[27] Barreto E, Oliveira J L G, Passos J C, et al.Analysis of air–water flow pattern in parallel microchannels: A visualization study[J]. Experimental Thermal and Fluid Science, 2015, 63: 1-8.[28] Ghanbarzadeh S, Hanafizadeh P, Hassan Saidi M, et al.Intelligent Image-Based Gas-Liquid Two-Phase Flow Regime Recognition[J]. Journal of Fluids Engineering, 2012, 134(6).[29] Cubaud T, Ho C-M, et al.Transport of bubbles in square microchannels[J]. Physics of Fluids, 2002, 16: 4575-4585.[30]Kawahara A, Chung M Y, Kawaji M, et al.Investigation of two-phase flow pattern,void fraction and pressure drop in a microchannel[J].International Journal of Multiphase Flow, 2002, 28(9):1411-1435[31]Choi C, Yu D I, Kim M, et al.Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer[J].Experimental Thermal & Fluid Science, 2011, 35(6):1086-1096[32] Wang L, An S, Yu S, et al.Mass transfer characteristics of CO2 absorption into a phase-change solvent in a wetted-wall column[J]. International Journal of Greenhouse Gas Control, 2017, 64: 276-283.[33]Roudet M, Loubiere K, Gourdon C, et al.Hydrodynamic and mass transfer in inertial gas–liquid flow regimes through straight and meandering millimetric square channels[J].Chemical Engineering Science, 2011, 66(13):2974-2990[34] 吕术森, 陈雪莉, 于广锁, 等.应用电导探针测定鼓泡塔内气泡参数[J]. 化学反应工程与工艺, 2003(04): 344-351.[35] 朱姝, 包雨云, 陈雷, 等 用电导探针测定气-液多层桨搅拌槽内气泡尺寸分布[J].高校化学工程学报, 2011, 25(06): 977-984.[36]边鹏, 翟路生, 金宁德, 等.小管径气液两相泡状流双电导阵列探针测量方法[J].工程热物理学报, 2015, 36(08):1706-1711[37]何广湘, 郭晓燕, 杨索和, 等.气液鼓泡床反应器中气泡行为光纤探针测量方法[J].北京航空航天大学学报, 2017, 43(02):253-259[38]Liu Z, Zheng Y, Jia L, et al.Study of bubble induced flow structure using PIV[J].Chemical Engineering Science, 2005, 60(13):3537-3552[39]Liu Z, Zheng Y, et al.PIV study of bubble rising behavior[J].Powder Technology, 2006, 168(1):10-20[40]张会书, 袁希钢.激光诱导荧光技术测量规整填料内的液体分布[J].化工学报, 2014, 65(09):3331-3339[41] Huang J, Saito T, et al.Discussion about the differences in mass transfer, bubble motion and surrounding liquid motion between a contaminated system and a clean system based on consideration of three-dimensional wake structure obtained from LIF visualization[J]. Chemical Engineering Science, 2017, 170: 105-115.[42] Li J-p, Wang Y, Chang Y-l, et al.Cold model testing of in-situ catalyst activation by swirling self-rotation in ebullated bed reactor for biomass pyrolysis oils hydrogenation[J]. Chemical Engineering Journal, 2021, 406: 126909.[43]Burns J R, Ramshaw C, et al.Process intensification: Visual study of liquid maldistribution in rotating packed beds[J].Chemical Engineering Science, 1996, 51(8):1347-1352[44] Tung H-H, Mah R S H, et al.MODELING LIQUID MASS TRANSFER IN HIGEE SEPARATION PROCESS[J]. Chemical Engineering Communications, 1985, 39: 147-153.[45] 许明, 等.超重力旋转床中的气液两相流体流动和传质过程的数值模拟研究[D]. 北京化工大学, 2004.[46]马空军, 贾殿赠, 孙文磊, 等.物理场强化化工过程的研究进展[J].现代化工, 2009, 29(03):27-31[47] 肖祖峰, 陈明东, 韩光泽, 等.电磁场作用下的强化传质研究进展[J]. 化工进展, 2008(12): 1911-1916.[48]Elperin T, Fominykh A, Orenbakh Z, et al.Heat and mass transfer during bubble growth in an alternating electric field[J].International Communications in Heat and Mass Transfer, 2004, 31(8):1047-1056[49] 左恒, 王贻明, 张杰, 等.电场强化铜矿排土场氧气传质[J]. 化工学报, 2007(12): 3001-3005.[50]Ellenberger J, Krishna R, et al.Levitation of air bubbles in liquid under low frequency vibration excitement[J].Chemical Engineering Science, 2007, 62(18):5669-5673[51]Ellenberger J, van Baten J M, Krishna R, et al.Exploiting the Bjerknes force in bubble column reactors[J].Chemical Engineering Science, 2005, 60(22):5962-5970[52]张元平, 陈冰冰, 张玮, 等.机械振荡和超声波对摆式反应器气液传质性能的影响[J].化学反应工程与工艺, 2009, 25(06):496-500[53]Ellenberger J, Krishna R, et al.Improving mass transfer in gas–liquid dispersions by vibration excitement[J].Chemical Engineering Science, 2002, 57(22):4809-4815[54] 邝生鲁, 贡长生, 等.声化学及其应用[J]. 化学通报, 1990(06): 23-27.[55] Wheat P E, Tumeo M A, et al.Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity[J]. Ultrasonics sonochemistry, 1997, 4 1: 55-9.[56]唐忠利, 彭林明, 张树杨, 等.纳米流体强化_鼓泡吸收实验[J].天津大学学报, 2012, 45(06):534-539[57] 张树杨, 等.纳米流体强化气液传质研究[D]. 天津大学, 2010.[58] 湛波, 等.纳米流体流动与传质的CFD模拟[D]. 天津大学, 2012.[59] Kim J K, Jung J-Y, Kang Y T, et al.Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids[J]. International Journal of Refrigeration-revue Internationale Du Froid, 2007, 30: 50-57.[60] 苏风民等.双组分纳米流体的物性测量和NH_3/H_2O泡状吸收强化的研究[D]. 大连理工大学, 2009.[61] Lu S, Xing M, Sun Y, et al.Experimental and Theoretical Studies of CO2 Absorption Enhancement by Nano-Al2O3 and Carbon Nanotube Particles[J]. Chinese Journal of Chemical Engineering, 2013, 21: 983-990.[62] Pineda I T, Lee J W, Jung I S, et al.CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber[J]. International Journal of Refrigeration-revue Internationale Du Froid, 2012, 35: 1402-1409.[63] Cai W, Zhang J, Zhang X, et al.Enhancement of CO2 Absorption under Taylor Flow in the Presence of Fine Particles[J]. Chinese Journal of Chemical Engineering, 2013, 21: 135-143.[64] Mehra A, et al.Gas absorption in reactive slurries: Particle dissolution near gas-liquid interface[J]. Chemical Engineering Science, 1996, 51: 461-477.[65] Lu S, Ma Y, Zhu C, et al.The Effect of Hydrophobic Modification of Zeolites on CO2 Absorption Enhancement[J]. Chinese Journal of Chemical Engineering, 2009, 17: 36-41.[66]Ferreira A, Ferreira C, Teixeira J A, et al.Temperature and solid properties effects on gas–liquid mass transfer[J].Chemical Engineering Journal, 2010, 162(2):743-752[67] Ramachandran P A, Sharma M,et al.Absorption with fast reaction in a slurry containing sparingly soluble fine particles[J]. Chemical Engineering Science, 1969, 24: 1681-1686.[68] Heeresa H J, Beenackersa A A C M, Pangarkarb V G,et al.The application of fine TiO2 particles for enhanced gas absorption[C], 2003.[69] Tinge J T, Drinkenburg A A H,et al.ABSORPTION OF GASES INTO ACTIVATED CARBON WATER SLURRIES IN A STIRRED CELL[J]. Chemical Engineering Science, 1992, 47: 1337-1345.[70] Demmink J F, Mehra A, Beenackers A A C M,et al.Gas absorption in the presence of particles showing interfacial affinity: case of fine sulfur precipitates: case of fine sulfur precipitates[J]. Chemical Engineering Science, 1998, 53: 2885-2902.[71] Ma D, Zhu C, Fu T, et al.Enhancement and mechanism of adsorptive particles on gas-liquid interfacial mass transfer[J]. Chemical Engineering and Processing - Process Intensification, 2020, 147: 107760.[72] Korda? M, Linek V.et al. Mechanism of enhanced gas absorption in presence of fine solid particles. Effect of molecular diffusivity on mass transfer coefficient in stirred cell[J]. Chemical Engineering Science, 2006, 61: 7125-7132.[73] Wang L, Yang Z, Ma L, et al.Treatment of CS2 in waste gas from rubber refining by gas cyclone-liquid jet separator[J]. Separation and Purification Technology, 2021, 276: 119324.[74] Huang Y, Li J-p, Zhang Y-h, et al.High-speed particle rotation for coating oil removal by hydrocyclone[J]. Sep Purif Technol, 2017, 177: 263-271.[75] Lu H, Wang H, Liu Y, et al.Substance transfer behavior controlled by droplet internal circulation[J]. Chemical Engineering Journal, 2020, 393: 124657.[76] Chang Y-l, Xu L, Li J-p, et al.Gas–Liquid Swirling-Sparger Configured along a Toroidal Distributor for the Intensification of Gas–Liquid Contacting[J]. Industrial & Engineering Chemistry Research, 2021, 60: 1423-1433.[77] He F Q, Zhang Y, Wang J, et al.Flow Patterns in Mini‐Hydrocyclones with Different Vortex Finder Depths[J]. Chemical Engineering & Technology, 2013, 36: 1935-1942.[78] Zhu G, Liow J-l, et al.Neely A J. Computational study of the flow characteristics and separation efficiency in a mini-hydrocyclone[J]. Chemical Engineering Research & Design, 2012, 90: 2135-2147.[79]Xu Y, Tang C-J, Huang H, et al.Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+[J].Chinese Journal of Analytical Chemistry, 2014, 42(9):1252-1258[80] He J Y, Wang H, Huang H L, et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.[81] Li S-h, Liu Z-m, Chang Y-l, et al.Removal of coke powders in coking wastewater using a hydrocyclone optimized by n-value[J]. The Science of the total environment, 2020, 752: 141887.[82] Sun Y, Liu Y, Zhang Y, et al.Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion[J]. Chemical Engineering Journal, 2019, 374: 1364-1372.[83] Xu Y, Fang Y, Wang Z, et al.In?situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water Research, 2018, 141: 135-144.[84]Wang H, Fu P, Li J, et al.Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J].Engineering, 2018, 4(3):406-415[85] Li J-p, Yang X, Ma L, et al.The enhancement on the waste management of spent hydrotreating catalysts for residue oil by a hydrothermal–hydrocyclone process[J]. Catalysis Today, 2016, 271: 163-171.[86] Yinxiang X, Liu Y, Zhang Y, et al.Effect of shear stress on deoiling of oil‐contaminated catalysts in a hydrocyclone[J]. Chemical Engineering & Technology, 2016, 39: 567-575.[87] Fu P, Wang H, Jianping L, et al.Cyclonic gas stripping deoiling and gas flow acceleration classification for the resource utilization of spent catalysts in residue hydrotreating process[J]. Journal of Cleaner Production, 2018.[88] Shi D, Huang Y, Wang H, et al.Deoiling of oil-coated catalyst using high-speed suspending self-rotation in cyclone[J]. Separation and Purification Technology, 2019.[89] Huang Y, Wang H-l, Chen Y-q, et al.Liquid-liquid extraction intensification by micro-droplet rotation in a hydrocyclone[J]. Scientific Reports, 2017, 7.[90] Liu Y, Wang H, Yinxiang X, et al.Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge[J]. Separation and Purification Technology, 2017, 177: 192-199.[91] Xu Y, Fang Y-h, Wang Z, et al.In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water research, 2018, 141: 135-144. |
[1] | 牛丛丛 栾学斌 徐润 夏国富. 分布式甲醇重整制氢动力学及反应器强化研究[J]. 石油炼制与化工, 2024, 55(3): 67-74. |
[2] | 吴启铭 王振 徐文武 辛蕾蕾 崔培哲. 绿色节能的萃取精馏工艺设计与强化[J]. 石油炼制与化工, 2024, 55(2): 128-134. |
[3] | 莫壮洪 朱俊英 荣峻峰 宗保宁. 微藻生物固碳技术在碳中和中的应用及潜在价值[J]. 石油炼制与化工, 2024, 55(1): 98-111. |
[4] | 吴长江. 我国绿色化工技术现状与发展建议[J]. 石油炼制与化工, 2024, 55(1): 68-81. |
[5] | 杜金涛 赵保槐 曾壮 苑志伟 曾双亲 鲍俊. 微波技术在分子筛材料合成及应用中的研究进展[J]. 石油炼制与化工, 2023, 54(8): 127-133. |
[6] | 郭传奎 贾燕子 杨清河 户安鹏 赵新强 胡大为. 双峰孔材料的制备及其在催化反应中的应用研究进展[J]. 石油炼制与化工, 2023, 54(10): 30-38. |
[7] | 徐岚 朱宁. C8芳烃异构体吸附分离工艺参数的测定与分析[J]. 石油炼制与化工, 2022, 53(7): 45-50. |
[8] | 杨哲. 化工过程本质安全技术研究进展[J]. 石油炼制与化工, 2021, 52(10): 31-37. |
[9] | 魏志强. 基于强化传质的节能型吸收稳定工艺流程分析[J]. , 2017, 48(7): 93-97. |
[10] | 孙立军 巢飞. 新型立体传质塔板在吸收稳定系统扩能改造中的应用[J]. 石油炼制与化工, 2015, 46(9): 85-88. |
[11] | 史倩 朱宁 郁灼. C8芳烃吸附平衡和传质参数的研究方法[J]. 石油炼制与化工, 2015, 46(7): 7-14. |
[12] | 王瑞梅 李胜昌 吕建华. 双层喷射立体传质塔板在催化裂化分馏塔的应用[J]. 石油炼制与化工, 2008, 39(9): 62-65. |
[13] | 朱亚东. 催化裂化吸收解吸系统传质分析及流程改进[J]. 石油炼制与化工, 2008, 39(12): 6-11. |
[14] | 董军 李建波. 塔板技术的发展现状与研究展望[J]. 石油炼制与化工, 2007, 38(11): 46-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||